MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem7 Structured version   Visualization version   GIF version

Theorem ftalem7 27136
Description: Lemma for fta 27137. Shift the minimum away from zero by a change of variables. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem7.5 (𝜑𝑋 ∈ ℂ)
ftalem7.6 (𝜑 → (𝐹𝑋) ≠ 0)
Assertion
Ref Expression
ftalem7 (𝜑 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem ftalem7
Dummy variables 𝑧 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 (coeff‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) = (coeff‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
2 eqid 2734 . . . 4 (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) = (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
3 simpr 484 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
4 ftalem7.5 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
54adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑋 ∈ ℂ)
63, 5addcld 11277 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (𝑧 + 𝑋) ∈ ℂ)
7 cnex 11233 . . . . . . . . 9 ℂ ∈ V
87a1i 11 . . . . . . . 8 (𝜑 → ℂ ∈ V)
94negcld 11604 . . . . . . . . 9 (𝜑 → -𝑋 ∈ ℂ)
109adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → -𝑋 ∈ ℂ)
11 df-idp 26242 . . . . . . . . . 10 Xp = ( I ↾ ℂ)
12 mptresid 6070 . . . . . . . . . 10 ( I ↾ ℂ) = (𝑧 ∈ ℂ ↦ 𝑧)
1311, 12eqtri 2762 . . . . . . . . 9 Xp = (𝑧 ∈ ℂ ↦ 𝑧)
1413a1i 11 . . . . . . . 8 (𝜑Xp = (𝑧 ∈ ℂ ↦ 𝑧))
15 fconstmpt 5750 . . . . . . . . 9 (ℂ × {-𝑋}) = (𝑧 ∈ ℂ ↦ -𝑋)
1615a1i 11 . . . . . . . 8 (𝜑 → (ℂ × {-𝑋}) = (𝑧 ∈ ℂ ↦ -𝑋))
178, 3, 10, 14, 16offval2 7716 . . . . . . 7 (𝜑 → (Xpf − (ℂ × {-𝑋})) = (𝑧 ∈ ℂ ↦ (𝑧 − -𝑋)))
18 id 22 . . . . . . . . 9 (𝑧 ∈ ℂ → 𝑧 ∈ ℂ)
19 subneg 11555 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑧 − -𝑋) = (𝑧 + 𝑋))
2018, 4, 19syl2anr 597 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝑧 − -𝑋) = (𝑧 + 𝑋))
2120mpteq2dva 5247 . . . . . . 7 (𝜑 → (𝑧 ∈ ℂ ↦ (𝑧 − -𝑋)) = (𝑧 ∈ ℂ ↦ (𝑧 + 𝑋)))
2217, 21eqtrd 2774 . . . . . 6 (𝜑 → (Xpf − (ℂ × {-𝑋})) = (𝑧 ∈ ℂ ↦ (𝑧 + 𝑋)))
23 ftalem.3 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘𝑆))
24 plyf 26251 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
2523, 24syl 17 . . . . . . 7 (𝜑𝐹:ℂ⟶ℂ)
2625feqmptd 6976 . . . . . 6 (𝜑𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
27 fveq2 6906 . . . . . 6 (𝑦 = (𝑧 + 𝑋) → (𝐹𝑦) = (𝐹‘(𝑧 + 𝑋)))
286, 22, 26, 27fmptco 7148 . . . . 5 (𝜑 → (𝐹 ∘ (Xpf − (ℂ × {-𝑋}))) = (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
29 plyssc 26253 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
3029, 23sselid 3992 . . . . . 6 (𝜑𝐹 ∈ (Poly‘ℂ))
31 eqid 2734 . . . . . . . . 9 (Xpf − (ℂ × {-𝑋})) = (Xpf − (ℂ × {-𝑋}))
3231plyremlem 26360 . . . . . . . 8 (-𝑋 ∈ ℂ → ((Xpf − (ℂ × {-𝑋})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {-𝑋}))) = 1 ∧ ((Xpf − (ℂ × {-𝑋})) “ {0}) = {-𝑋}))
339, 32syl 17 . . . . . . 7 (𝜑 → ((Xpf − (ℂ × {-𝑋})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {-𝑋}))) = 1 ∧ ((Xpf − (ℂ × {-𝑋})) “ {0}) = {-𝑋}))
3433simp1d 1141 . . . . . 6 (𝜑 → (Xpf − (ℂ × {-𝑋})) ∈ (Poly‘ℂ))
35 addcl 11234 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ)
3635adantl 481 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ)
37 mulcl 11236 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ)
3837adantl 481 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
3930, 34, 36, 38plyco 26294 . . . . 5 (𝜑 → (𝐹 ∘ (Xpf − (ℂ × {-𝑋}))) ∈ (Poly‘ℂ))
4028, 39eqeltrrd 2839 . . . 4 (𝜑 → (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))) ∈ (Poly‘ℂ))
4128fveq2d 6910 . . . . 5 (𝜑 → (deg‘(𝐹 ∘ (Xpf − (ℂ × {-𝑋})))) = (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))))
42 ftalem.2 . . . . . . 7 𝑁 = (deg‘𝐹)
43 eqid 2734 . . . . . . 7 (deg‘(Xpf − (ℂ × {-𝑋}))) = (deg‘(Xpf − (ℂ × {-𝑋})))
4442, 43, 30, 34dgrco 26329 . . . . . 6 (𝜑 → (deg‘(𝐹 ∘ (Xpf − (ℂ × {-𝑋})))) = (𝑁 · (deg‘(Xpf − (ℂ × {-𝑋})))))
45 ftalem.4 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
4633simp2d 1142 . . . . . . . 8 (𝜑 → (deg‘(Xpf − (ℂ × {-𝑋}))) = 1)
47 1nn 12274 . . . . . . . 8 1 ∈ ℕ
4846, 47eqeltrdi 2846 . . . . . . 7 (𝜑 → (deg‘(Xpf − (ℂ × {-𝑋}))) ∈ ℕ)
4945, 48nnmulcld 12316 . . . . . 6 (𝜑 → (𝑁 · (deg‘(Xpf − (ℂ × {-𝑋})))) ∈ ℕ)
5044, 49eqeltrd 2838 . . . . 5 (𝜑 → (deg‘(𝐹 ∘ (Xpf − (ℂ × {-𝑋})))) ∈ ℕ)
5141, 50eqeltrrd 2839 . . . 4 (𝜑 → (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) ∈ ℕ)
52 0cn 11250 . . . . . . 7 0 ∈ ℂ
53 fvoveq1 7453 . . . . . . . 8 (𝑧 = 0 → (𝐹‘(𝑧 + 𝑋)) = (𝐹‘(0 + 𝑋)))
54 eqid 2734 . . . . . . . 8 (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))) = (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))
55 fvex 6919 . . . . . . . 8 (𝐹‘(0 + 𝑋)) ∈ V
5653, 54, 55fvmpt 7015 . . . . . . 7 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹‘(0 + 𝑋)))
5752, 56ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹‘(0 + 𝑋))
584addlidd 11459 . . . . . . 7 (𝜑 → (0 + 𝑋) = 𝑋)
5958fveq2d 6910 . . . . . 6 (𝜑 → (𝐹‘(0 + 𝑋)) = (𝐹𝑋))
6057, 59eqtrid 2786 . . . . 5 (𝜑 → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹𝑋))
61 ftalem7.6 . . . . 5 (𝜑 → (𝐹𝑋) ≠ 0)
6260, 61eqnetrd 3005 . . . 4 (𝜑 → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) ≠ 0)
631, 2, 40, 51, 62ftalem6 27135 . . 3 (𝜑 → ∃𝑦 ∈ ℂ (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)))
64 id 22 . . . . . 6 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
65 addcl 11234 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑦 + 𝑋) ∈ ℂ)
6664, 4, 65syl2anr 597 . . . . 5 ((𝜑𝑦 ∈ ℂ) → (𝑦 + 𝑋) ∈ ℂ)
67 fvoveq1 7453 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐹‘(𝑧 + 𝑋)) = (𝐹‘(𝑦 + 𝑋)))
68 fvex 6919 . . . . . . . . . . 11 (𝐹‘(𝑦 + 𝑋)) ∈ V
6967, 54, 68fvmpt 7015 . . . . . . . . . 10 (𝑦 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦) = (𝐹‘(𝑦 + 𝑋)))
7069adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦) = (𝐹‘(𝑦 + 𝑋)))
7170fveq2d 6910 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) = (abs‘(𝐹‘(𝑦 + 𝑋))))
7260adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹𝑋))
7372fveq2d 6910 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) = (abs‘(𝐹𝑋)))
7471, 73breq12d 5160 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) ↔ (abs‘(𝐹‘(𝑦 + 𝑋))) < (abs‘(𝐹𝑋))))
7525adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
7675, 66ffvelcdmd 7104 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝐹‘(𝑦 + 𝑋)) ∈ ℂ)
7776abscld 15471 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘(𝐹‘(𝑦 + 𝑋))) ∈ ℝ)
7825, 4ffvelcdmd 7104 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ℂ)
7978abscld 15471 . . . . . . . . 9 (𝜑 → (abs‘(𝐹𝑋)) ∈ ℝ)
8079adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘(𝐹𝑋)) ∈ ℝ)
8177, 80ltnled 11405 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → ((abs‘(𝐹‘(𝑦 + 𝑋))) < (abs‘(𝐹𝑋)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8274, 81bitrd 279 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8382biimpd 229 . . . . 5 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
84 2fveq3 6911 . . . . . . . 8 (𝑥 = (𝑦 + 𝑋) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝑦 + 𝑋))))
8584breq2d 5159 . . . . . . 7 (𝑥 = (𝑦 + 𝑋) → ((abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8685notbid 318 . . . . . 6 (𝑥 = (𝑦 + 𝑋) → (¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8786rspcev 3621 . . . . 5 (((𝑦 + 𝑋) ∈ ℂ ∧ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
8866, 83, 87syl6an 684 . . . 4 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥))))
8988rexlimdva 3152 . . 3 (𝜑 → (∃𝑦 ∈ ℂ (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥))))
9063, 89mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
91 rexnal 3097 . 2 (∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
9290, 91sylib 218 1 (𝜑 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  {csn 4630   class class class wbr 5147  cmpt 5230   I cid 5581   × cxp 5686  ccnv 5687  cres 5690  cima 5691  ccom 5692  wf 6558  cfv 6562  (class class class)co 7430  f cof 7694  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  -cneg 11490  cn 12263  abscabs 15269  Polycply 26237  Xpcidp 26238  coeffccoe 26239  degcdgr 26240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-0p 25718  df-limc 25915  df-dv 25916  df-ply 26241  df-idp 26242  df-coe 26243  df-dgr 26244  df-log 26612  df-cxp 26613
This theorem is referenced by:  fta  27137
  Copyright terms: Public domain W3C validator