MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem7 Structured version   Visualization version   GIF version

Theorem ftalem7 25659
Description: Lemma for fta 25660. Shift the minimum away from zero by a change of variables. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem7.5 (𝜑𝑋 ∈ ℂ)
ftalem7.6 (𝜑 → (𝐹𝑋) ≠ 0)
Assertion
Ref Expression
ftalem7 (𝜑 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem ftalem7
Dummy variables 𝑧 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . 4 (coeff‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) = (coeff‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
2 eqid 2824 . . . 4 (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) = (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
3 simpr 487 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
4 ftalem7.5 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
54adantr 483 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑋 ∈ ℂ)
63, 5addcld 10663 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (𝑧 + 𝑋) ∈ ℂ)
7 cnex 10621 . . . . . . . . 9 ℂ ∈ V
87a1i 11 . . . . . . . 8 (𝜑 → ℂ ∈ V)
94negcld 10987 . . . . . . . . 9 (𝜑 → -𝑋 ∈ ℂ)
109adantr 483 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → -𝑋 ∈ ℂ)
11 df-idp 24782 . . . . . . . . . 10 Xp = ( I ↾ ℂ)
12 mptresid 5921 . . . . . . . . . 10 ( I ↾ ℂ) = (𝑧 ∈ ℂ ↦ 𝑧)
1311, 12eqtri 2847 . . . . . . . . 9 Xp = (𝑧 ∈ ℂ ↦ 𝑧)
1413a1i 11 . . . . . . . 8 (𝜑Xp = (𝑧 ∈ ℂ ↦ 𝑧))
15 fconstmpt 5617 . . . . . . . . 9 (ℂ × {-𝑋}) = (𝑧 ∈ ℂ ↦ -𝑋)
1615a1i 11 . . . . . . . 8 (𝜑 → (ℂ × {-𝑋}) = (𝑧 ∈ ℂ ↦ -𝑋))
178, 3, 10, 14, 16offval2 7429 . . . . . . 7 (𝜑 → (Xpf − (ℂ × {-𝑋})) = (𝑧 ∈ ℂ ↦ (𝑧 − -𝑋)))
18 id 22 . . . . . . . . 9 (𝑧 ∈ ℂ → 𝑧 ∈ ℂ)
19 subneg 10938 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑧 − -𝑋) = (𝑧 + 𝑋))
2018, 4, 19syl2anr 598 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝑧 − -𝑋) = (𝑧 + 𝑋))
2120mpteq2dva 5164 . . . . . . 7 (𝜑 → (𝑧 ∈ ℂ ↦ (𝑧 − -𝑋)) = (𝑧 ∈ ℂ ↦ (𝑧 + 𝑋)))
2217, 21eqtrd 2859 . . . . . 6 (𝜑 → (Xpf − (ℂ × {-𝑋})) = (𝑧 ∈ ℂ ↦ (𝑧 + 𝑋)))
23 ftalem.3 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘𝑆))
24 plyf 24791 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
2523, 24syl 17 . . . . . . 7 (𝜑𝐹:ℂ⟶ℂ)
2625feqmptd 6736 . . . . . 6 (𝜑𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
27 fveq2 6673 . . . . . 6 (𝑦 = (𝑧 + 𝑋) → (𝐹𝑦) = (𝐹‘(𝑧 + 𝑋)))
286, 22, 26, 27fmptco 6894 . . . . 5 (𝜑 → (𝐹 ∘ (Xpf − (ℂ × {-𝑋}))) = (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
29 plyssc 24793 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
3029, 23sseldi 3968 . . . . . 6 (𝜑𝐹 ∈ (Poly‘ℂ))
31 eqid 2824 . . . . . . . . 9 (Xpf − (ℂ × {-𝑋})) = (Xpf − (ℂ × {-𝑋}))
3231plyremlem 24896 . . . . . . . 8 (-𝑋 ∈ ℂ → ((Xpf − (ℂ × {-𝑋})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {-𝑋}))) = 1 ∧ ((Xpf − (ℂ × {-𝑋})) “ {0}) = {-𝑋}))
339, 32syl 17 . . . . . . 7 (𝜑 → ((Xpf − (ℂ × {-𝑋})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {-𝑋}))) = 1 ∧ ((Xpf − (ℂ × {-𝑋})) “ {0}) = {-𝑋}))
3433simp1d 1138 . . . . . 6 (𝜑 → (Xpf − (ℂ × {-𝑋})) ∈ (Poly‘ℂ))
35 addcl 10622 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ)
3635adantl 484 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ)
37 mulcl 10624 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ)
3837adantl 484 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
3930, 34, 36, 38plyco 24834 . . . . 5 (𝜑 → (𝐹 ∘ (Xpf − (ℂ × {-𝑋}))) ∈ (Poly‘ℂ))
4028, 39eqeltrrd 2917 . . . 4 (𝜑 → (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))) ∈ (Poly‘ℂ))
4128fveq2d 6677 . . . . 5 (𝜑 → (deg‘(𝐹 ∘ (Xpf − (ℂ × {-𝑋})))) = (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))))
42 ftalem.2 . . . . . . 7 𝑁 = (deg‘𝐹)
43 eqid 2824 . . . . . . 7 (deg‘(Xpf − (ℂ × {-𝑋}))) = (deg‘(Xpf − (ℂ × {-𝑋})))
4442, 43, 30, 34dgrco 24868 . . . . . 6 (𝜑 → (deg‘(𝐹 ∘ (Xpf − (ℂ × {-𝑋})))) = (𝑁 · (deg‘(Xpf − (ℂ × {-𝑋})))))
45 ftalem.4 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
4633simp2d 1139 . . . . . . . 8 (𝜑 → (deg‘(Xpf − (ℂ × {-𝑋}))) = 1)
47 1nn 11652 . . . . . . . 8 1 ∈ ℕ
4846, 47eqeltrdi 2924 . . . . . . 7 (𝜑 → (deg‘(Xpf − (ℂ × {-𝑋}))) ∈ ℕ)
4945, 48nnmulcld 11693 . . . . . 6 (𝜑 → (𝑁 · (deg‘(Xpf − (ℂ × {-𝑋})))) ∈ ℕ)
5044, 49eqeltrd 2916 . . . . 5 (𝜑 → (deg‘(𝐹 ∘ (Xpf − (ℂ × {-𝑋})))) ∈ ℕ)
5141, 50eqeltrrd 2917 . . . 4 (𝜑 → (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) ∈ ℕ)
52 0cn 10636 . . . . . . 7 0 ∈ ℂ
53 fvoveq1 7182 . . . . . . . 8 (𝑧 = 0 → (𝐹‘(𝑧 + 𝑋)) = (𝐹‘(0 + 𝑋)))
54 eqid 2824 . . . . . . . 8 (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))) = (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))
55 fvex 6686 . . . . . . . 8 (𝐹‘(0 + 𝑋)) ∈ V
5653, 54, 55fvmpt 6771 . . . . . . 7 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹‘(0 + 𝑋)))
5752, 56ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹‘(0 + 𝑋))
584addid2d 10844 . . . . . . 7 (𝜑 → (0 + 𝑋) = 𝑋)
5958fveq2d 6677 . . . . . 6 (𝜑 → (𝐹‘(0 + 𝑋)) = (𝐹𝑋))
6057, 59syl5eq 2871 . . . . 5 (𝜑 → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹𝑋))
61 ftalem7.6 . . . . 5 (𝜑 → (𝐹𝑋) ≠ 0)
6260, 61eqnetrd 3086 . . . 4 (𝜑 → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) ≠ 0)
631, 2, 40, 51, 62ftalem6 25658 . . 3 (𝜑 → ∃𝑦 ∈ ℂ (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)))
64 id 22 . . . . . 6 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
65 addcl 10622 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑦 + 𝑋) ∈ ℂ)
6664, 4, 65syl2anr 598 . . . . 5 ((𝜑𝑦 ∈ ℂ) → (𝑦 + 𝑋) ∈ ℂ)
67 fvoveq1 7182 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐹‘(𝑧 + 𝑋)) = (𝐹‘(𝑦 + 𝑋)))
68 fvex 6686 . . . . . . . . . . 11 (𝐹‘(𝑦 + 𝑋)) ∈ V
6967, 54, 68fvmpt 6771 . . . . . . . . . 10 (𝑦 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦) = (𝐹‘(𝑦 + 𝑋)))
7069adantl 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦) = (𝐹‘(𝑦 + 𝑋)))
7170fveq2d 6677 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) = (abs‘(𝐹‘(𝑦 + 𝑋))))
7260adantr 483 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹𝑋))
7372fveq2d 6677 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) = (abs‘(𝐹𝑋)))
7471, 73breq12d 5082 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) ↔ (abs‘(𝐹‘(𝑦 + 𝑋))) < (abs‘(𝐹𝑋))))
7525adantr 483 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
7675, 66ffvelrnd 6855 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝐹‘(𝑦 + 𝑋)) ∈ ℂ)
7776abscld 14799 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘(𝐹‘(𝑦 + 𝑋))) ∈ ℝ)
7825, 4ffvelrnd 6855 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ℂ)
7978abscld 14799 . . . . . . . . 9 (𝜑 → (abs‘(𝐹𝑋)) ∈ ℝ)
8079adantr 483 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘(𝐹𝑋)) ∈ ℝ)
8177, 80ltnled 10790 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → ((abs‘(𝐹‘(𝑦 + 𝑋))) < (abs‘(𝐹𝑋)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8274, 81bitrd 281 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8382biimpd 231 . . . . 5 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
84 2fveq3 6678 . . . . . . . 8 (𝑥 = (𝑦 + 𝑋) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝑦 + 𝑋))))
8584breq2d 5081 . . . . . . 7 (𝑥 = (𝑦 + 𝑋) → ((abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8685notbid 320 . . . . . 6 (𝑥 = (𝑦 + 𝑋) → (¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8786rspcev 3626 . . . . 5 (((𝑦 + 𝑋) ∈ ℂ ∧ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
8866, 83, 87syl6an 682 . . . 4 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥))))
8988rexlimdva 3287 . . 3 (𝜑 → (∃𝑦 ∈ ℂ (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥))))
9063, 89mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
91 rexnal 3241 . 2 (∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
9290, 91sylib 220 1 (𝜑 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  Vcvv 3497  {csn 4570   class class class wbr 5069  cmpt 5149   I cid 5462   × cxp 5556  ccnv 5557  cres 5560  cima 5561  ccom 5562  wf 6354  cfv 6358  (class class class)co 7159  f cof 7410  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679  cmin 10873  -cneg 10874  cn 11641  abscabs 14596  Polycply 24777  Xpcidp 24778  coeffccoe 24779  degcdgr 24780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ef 15424  df-sin 15426  df-cos 15427  df-pi 15429  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-0p 24274  df-limc 24467  df-dv 24468  df-ply 24781  df-idp 24782  df-coe 24783  df-dgr 24784  df-log 25143  df-cxp 25144
This theorem is referenced by:  fta  25660
  Copyright terms: Public domain W3C validator