MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem7 Structured version   Visualization version   GIF version

Theorem ftalem7 26989
Description: Lemma for fta 26990. Shift the minimum away from zero by a change of variables. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem7.5 (𝜑𝑋 ∈ ℂ)
ftalem7.6 (𝜑 → (𝐹𝑋) ≠ 0)
Assertion
Ref Expression
ftalem7 (𝜑 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem ftalem7
Dummy variables 𝑧 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (coeff‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) = (coeff‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
2 eqid 2729 . . . 4 (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) = (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
3 simpr 484 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
4 ftalem7.5 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
54adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑋 ∈ ℂ)
63, 5addcld 11193 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (𝑧 + 𝑋) ∈ ℂ)
7 cnex 11149 . . . . . . . . 9 ℂ ∈ V
87a1i 11 . . . . . . . 8 (𝜑 → ℂ ∈ V)
94negcld 11520 . . . . . . . . 9 (𝜑 → -𝑋 ∈ ℂ)
109adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → -𝑋 ∈ ℂ)
11 df-idp 26094 . . . . . . . . . 10 Xp = ( I ↾ ℂ)
12 mptresid 6022 . . . . . . . . . 10 ( I ↾ ℂ) = (𝑧 ∈ ℂ ↦ 𝑧)
1311, 12eqtri 2752 . . . . . . . . 9 Xp = (𝑧 ∈ ℂ ↦ 𝑧)
1413a1i 11 . . . . . . . 8 (𝜑Xp = (𝑧 ∈ ℂ ↦ 𝑧))
15 fconstmpt 5700 . . . . . . . . 9 (ℂ × {-𝑋}) = (𝑧 ∈ ℂ ↦ -𝑋)
1615a1i 11 . . . . . . . 8 (𝜑 → (ℂ × {-𝑋}) = (𝑧 ∈ ℂ ↦ -𝑋))
178, 3, 10, 14, 16offval2 7673 . . . . . . 7 (𝜑 → (Xpf − (ℂ × {-𝑋})) = (𝑧 ∈ ℂ ↦ (𝑧 − -𝑋)))
18 id 22 . . . . . . . . 9 (𝑧 ∈ ℂ → 𝑧 ∈ ℂ)
19 subneg 11471 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑧 − -𝑋) = (𝑧 + 𝑋))
2018, 4, 19syl2anr 597 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝑧 − -𝑋) = (𝑧 + 𝑋))
2120mpteq2dva 5200 . . . . . . 7 (𝜑 → (𝑧 ∈ ℂ ↦ (𝑧 − -𝑋)) = (𝑧 ∈ ℂ ↦ (𝑧 + 𝑋)))
2217, 21eqtrd 2764 . . . . . 6 (𝜑 → (Xpf − (ℂ × {-𝑋})) = (𝑧 ∈ ℂ ↦ (𝑧 + 𝑋)))
23 ftalem.3 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘𝑆))
24 plyf 26103 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
2523, 24syl 17 . . . . . . 7 (𝜑𝐹:ℂ⟶ℂ)
2625feqmptd 6929 . . . . . 6 (𝜑𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
27 fveq2 6858 . . . . . 6 (𝑦 = (𝑧 + 𝑋) → (𝐹𝑦) = (𝐹‘(𝑧 + 𝑋)))
286, 22, 26, 27fmptco 7101 . . . . 5 (𝜑 → (𝐹 ∘ (Xpf − (ℂ × {-𝑋}))) = (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
29 plyssc 26105 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
3029, 23sselid 3944 . . . . . 6 (𝜑𝐹 ∈ (Poly‘ℂ))
31 eqid 2729 . . . . . . . . 9 (Xpf − (ℂ × {-𝑋})) = (Xpf − (ℂ × {-𝑋}))
3231plyremlem 26212 . . . . . . . 8 (-𝑋 ∈ ℂ → ((Xpf − (ℂ × {-𝑋})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {-𝑋}))) = 1 ∧ ((Xpf − (ℂ × {-𝑋})) “ {0}) = {-𝑋}))
339, 32syl 17 . . . . . . 7 (𝜑 → ((Xpf − (ℂ × {-𝑋})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {-𝑋}))) = 1 ∧ ((Xpf − (ℂ × {-𝑋})) “ {0}) = {-𝑋}))
3433simp1d 1142 . . . . . 6 (𝜑 → (Xpf − (ℂ × {-𝑋})) ∈ (Poly‘ℂ))
35 addcl 11150 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ)
3635adantl 481 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ)
37 mulcl 11152 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ)
3837adantl 481 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
3930, 34, 36, 38plyco 26146 . . . . 5 (𝜑 → (𝐹 ∘ (Xpf − (ℂ × {-𝑋}))) ∈ (Poly‘ℂ))
4028, 39eqeltrrd 2829 . . . 4 (𝜑 → (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))) ∈ (Poly‘ℂ))
4128fveq2d 6862 . . . . 5 (𝜑 → (deg‘(𝐹 ∘ (Xpf − (ℂ × {-𝑋})))) = (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))))
42 ftalem.2 . . . . . . 7 𝑁 = (deg‘𝐹)
43 eqid 2729 . . . . . . 7 (deg‘(Xpf − (ℂ × {-𝑋}))) = (deg‘(Xpf − (ℂ × {-𝑋})))
4442, 43, 30, 34dgrco 26181 . . . . . 6 (𝜑 → (deg‘(𝐹 ∘ (Xpf − (ℂ × {-𝑋})))) = (𝑁 · (deg‘(Xpf − (ℂ × {-𝑋})))))
45 ftalem.4 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
4633simp2d 1143 . . . . . . . 8 (𝜑 → (deg‘(Xpf − (ℂ × {-𝑋}))) = 1)
47 1nn 12197 . . . . . . . 8 1 ∈ ℕ
4846, 47eqeltrdi 2836 . . . . . . 7 (𝜑 → (deg‘(Xpf − (ℂ × {-𝑋}))) ∈ ℕ)
4945, 48nnmulcld 12239 . . . . . 6 (𝜑 → (𝑁 · (deg‘(Xpf − (ℂ × {-𝑋})))) ∈ ℕ)
5044, 49eqeltrd 2828 . . . . 5 (𝜑 → (deg‘(𝐹 ∘ (Xpf − (ℂ × {-𝑋})))) ∈ ℕ)
5141, 50eqeltrrd 2829 . . . 4 (𝜑 → (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) ∈ ℕ)
52 0cn 11166 . . . . . . 7 0 ∈ ℂ
53 fvoveq1 7410 . . . . . . . 8 (𝑧 = 0 → (𝐹‘(𝑧 + 𝑋)) = (𝐹‘(0 + 𝑋)))
54 eqid 2729 . . . . . . . 8 (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))) = (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))
55 fvex 6871 . . . . . . . 8 (𝐹‘(0 + 𝑋)) ∈ V
5653, 54, 55fvmpt 6968 . . . . . . 7 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹‘(0 + 𝑋)))
5752, 56ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹‘(0 + 𝑋))
584addlidd 11375 . . . . . . 7 (𝜑 → (0 + 𝑋) = 𝑋)
5958fveq2d 6862 . . . . . 6 (𝜑 → (𝐹‘(0 + 𝑋)) = (𝐹𝑋))
6057, 59eqtrid 2776 . . . . 5 (𝜑 → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹𝑋))
61 ftalem7.6 . . . . 5 (𝜑 → (𝐹𝑋) ≠ 0)
6260, 61eqnetrd 2992 . . . 4 (𝜑 → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) ≠ 0)
631, 2, 40, 51, 62ftalem6 26988 . . 3 (𝜑 → ∃𝑦 ∈ ℂ (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)))
64 id 22 . . . . . 6 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
65 addcl 11150 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑦 + 𝑋) ∈ ℂ)
6664, 4, 65syl2anr 597 . . . . 5 ((𝜑𝑦 ∈ ℂ) → (𝑦 + 𝑋) ∈ ℂ)
67 fvoveq1 7410 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐹‘(𝑧 + 𝑋)) = (𝐹‘(𝑦 + 𝑋)))
68 fvex 6871 . . . . . . . . . . 11 (𝐹‘(𝑦 + 𝑋)) ∈ V
6967, 54, 68fvmpt 6968 . . . . . . . . . 10 (𝑦 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦) = (𝐹‘(𝑦 + 𝑋)))
7069adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦) = (𝐹‘(𝑦 + 𝑋)))
7170fveq2d 6862 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) = (abs‘(𝐹‘(𝑦 + 𝑋))))
7260adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹𝑋))
7372fveq2d 6862 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) = (abs‘(𝐹𝑋)))
7471, 73breq12d 5120 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) ↔ (abs‘(𝐹‘(𝑦 + 𝑋))) < (abs‘(𝐹𝑋))))
7525adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
7675, 66ffvelcdmd 7057 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝐹‘(𝑦 + 𝑋)) ∈ ℂ)
7776abscld 15405 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘(𝐹‘(𝑦 + 𝑋))) ∈ ℝ)
7825, 4ffvelcdmd 7057 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ℂ)
7978abscld 15405 . . . . . . . . 9 (𝜑 → (abs‘(𝐹𝑋)) ∈ ℝ)
8079adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘(𝐹𝑋)) ∈ ℝ)
8177, 80ltnled 11321 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → ((abs‘(𝐹‘(𝑦 + 𝑋))) < (abs‘(𝐹𝑋)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8274, 81bitrd 279 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8382biimpd 229 . . . . 5 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
84 2fveq3 6863 . . . . . . . 8 (𝑥 = (𝑦 + 𝑋) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝑦 + 𝑋))))
8584breq2d 5119 . . . . . . 7 (𝑥 = (𝑦 + 𝑋) → ((abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8685notbid 318 . . . . . 6 (𝑥 = (𝑦 + 𝑋) → (¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8786rspcev 3588 . . . . 5 (((𝑦 + 𝑋) ∈ ℂ ∧ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
8866, 83, 87syl6an 684 . . . 4 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥))))
8988rexlimdva 3134 . . 3 (𝜑 → (∃𝑦 ∈ ℂ (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥))))
9063, 89mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
91 rexnal 3082 . 2 (∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
9290, 91sylib 218 1 (𝜑 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  {csn 4589   class class class wbr 5107  cmpt 5188   I cid 5532   × cxp 5636  ccnv 5637  cres 5640  cima 5641  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406  cn 12186  abscabs 15200  Polycply 26089  Xpcidp 26090  coeffccoe 26091  degcdgr 26092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-0p 25571  df-limc 25767  df-dv 25768  df-ply 26093  df-idp 26094  df-coe 26095  df-dgr 26096  df-log 26465  df-cxp 26466
This theorem is referenced by:  fta  26990
  Copyright terms: Public domain W3C validator