MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem7 Structured version   Visualization version   GIF version

Theorem ftalem7 25961
Description: Lemma for fta 25962. Shift the minimum away from zero by a change of variables. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem7.5 (𝜑𝑋 ∈ ℂ)
ftalem7.6 (𝜑 → (𝐹𝑋) ≠ 0)
Assertion
Ref Expression
ftalem7 (𝜑 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem ftalem7
Dummy variables 𝑧 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (coeff‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) = (coeff‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
2 eqid 2737 . . . 4 (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) = (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
3 simpr 488 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
4 ftalem7.5 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
54adantr 484 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑋 ∈ ℂ)
63, 5addcld 10852 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (𝑧 + 𝑋) ∈ ℂ)
7 cnex 10810 . . . . . . . . 9 ℂ ∈ V
87a1i 11 . . . . . . . 8 (𝜑 → ℂ ∈ V)
94negcld 11176 . . . . . . . . 9 (𝜑 → -𝑋 ∈ ℂ)
109adantr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → -𝑋 ∈ ℂ)
11 df-idp 25083 . . . . . . . . . 10 Xp = ( I ↾ ℂ)
12 mptresid 5918 . . . . . . . . . 10 ( I ↾ ℂ) = (𝑧 ∈ ℂ ↦ 𝑧)
1311, 12eqtri 2765 . . . . . . . . 9 Xp = (𝑧 ∈ ℂ ↦ 𝑧)
1413a1i 11 . . . . . . . 8 (𝜑Xp = (𝑧 ∈ ℂ ↦ 𝑧))
15 fconstmpt 5611 . . . . . . . . 9 (ℂ × {-𝑋}) = (𝑧 ∈ ℂ ↦ -𝑋)
1615a1i 11 . . . . . . . 8 (𝜑 → (ℂ × {-𝑋}) = (𝑧 ∈ ℂ ↦ -𝑋))
178, 3, 10, 14, 16offval2 7488 . . . . . . 7 (𝜑 → (Xpf − (ℂ × {-𝑋})) = (𝑧 ∈ ℂ ↦ (𝑧 − -𝑋)))
18 id 22 . . . . . . . . 9 (𝑧 ∈ ℂ → 𝑧 ∈ ℂ)
19 subneg 11127 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑧 − -𝑋) = (𝑧 + 𝑋))
2018, 4, 19syl2anr 600 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝑧 − -𝑋) = (𝑧 + 𝑋))
2120mpteq2dva 5150 . . . . . . 7 (𝜑 → (𝑧 ∈ ℂ ↦ (𝑧 − -𝑋)) = (𝑧 ∈ ℂ ↦ (𝑧 + 𝑋)))
2217, 21eqtrd 2777 . . . . . 6 (𝜑 → (Xpf − (ℂ × {-𝑋})) = (𝑧 ∈ ℂ ↦ (𝑧 + 𝑋)))
23 ftalem.3 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘𝑆))
24 plyf 25092 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
2523, 24syl 17 . . . . . . 7 (𝜑𝐹:ℂ⟶ℂ)
2625feqmptd 6780 . . . . . 6 (𝜑𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
27 fveq2 6717 . . . . . 6 (𝑦 = (𝑧 + 𝑋) → (𝐹𝑦) = (𝐹‘(𝑧 + 𝑋)))
286, 22, 26, 27fmptco 6944 . . . . 5 (𝜑 → (𝐹 ∘ (Xpf − (ℂ × {-𝑋}))) = (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
29 plyssc 25094 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
3029, 23sseldi 3899 . . . . . 6 (𝜑𝐹 ∈ (Poly‘ℂ))
31 eqid 2737 . . . . . . . . 9 (Xpf − (ℂ × {-𝑋})) = (Xpf − (ℂ × {-𝑋}))
3231plyremlem 25197 . . . . . . . 8 (-𝑋 ∈ ℂ → ((Xpf − (ℂ × {-𝑋})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {-𝑋}))) = 1 ∧ ((Xpf − (ℂ × {-𝑋})) “ {0}) = {-𝑋}))
339, 32syl 17 . . . . . . 7 (𝜑 → ((Xpf − (ℂ × {-𝑋})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {-𝑋}))) = 1 ∧ ((Xpf − (ℂ × {-𝑋})) “ {0}) = {-𝑋}))
3433simp1d 1144 . . . . . 6 (𝜑 → (Xpf − (ℂ × {-𝑋})) ∈ (Poly‘ℂ))
35 addcl 10811 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ)
3635adantl 485 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ)
37 mulcl 10813 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ)
3837adantl 485 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
3930, 34, 36, 38plyco 25135 . . . . 5 (𝜑 → (𝐹 ∘ (Xpf − (ℂ × {-𝑋}))) ∈ (Poly‘ℂ))
4028, 39eqeltrrd 2839 . . . 4 (𝜑 → (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))) ∈ (Poly‘ℂ))
4128fveq2d 6721 . . . . 5 (𝜑 → (deg‘(𝐹 ∘ (Xpf − (ℂ × {-𝑋})))) = (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))))
42 ftalem.2 . . . . . . 7 𝑁 = (deg‘𝐹)
43 eqid 2737 . . . . . . 7 (deg‘(Xpf − (ℂ × {-𝑋}))) = (deg‘(Xpf − (ℂ × {-𝑋})))
4442, 43, 30, 34dgrco 25169 . . . . . 6 (𝜑 → (deg‘(𝐹 ∘ (Xpf − (ℂ × {-𝑋})))) = (𝑁 · (deg‘(Xpf − (ℂ × {-𝑋})))))
45 ftalem.4 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
4633simp2d 1145 . . . . . . . 8 (𝜑 → (deg‘(Xpf − (ℂ × {-𝑋}))) = 1)
47 1nn 11841 . . . . . . . 8 1 ∈ ℕ
4846, 47eqeltrdi 2846 . . . . . . 7 (𝜑 → (deg‘(Xpf − (ℂ × {-𝑋}))) ∈ ℕ)
4945, 48nnmulcld 11883 . . . . . 6 (𝜑 → (𝑁 · (deg‘(Xpf − (ℂ × {-𝑋})))) ∈ ℕ)
5044, 49eqeltrd 2838 . . . . 5 (𝜑 → (deg‘(𝐹 ∘ (Xpf − (ℂ × {-𝑋})))) ∈ ℕ)
5141, 50eqeltrrd 2839 . . . 4 (𝜑 → (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) ∈ ℕ)
52 0cn 10825 . . . . . . 7 0 ∈ ℂ
53 fvoveq1 7236 . . . . . . . 8 (𝑧 = 0 → (𝐹‘(𝑧 + 𝑋)) = (𝐹‘(0 + 𝑋)))
54 eqid 2737 . . . . . . . 8 (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))) = (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))
55 fvex 6730 . . . . . . . 8 (𝐹‘(0 + 𝑋)) ∈ V
5653, 54, 55fvmpt 6818 . . . . . . 7 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹‘(0 + 𝑋)))
5752, 56ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹‘(0 + 𝑋))
584addid2d 11033 . . . . . . 7 (𝜑 → (0 + 𝑋) = 𝑋)
5958fveq2d 6721 . . . . . 6 (𝜑 → (𝐹‘(0 + 𝑋)) = (𝐹𝑋))
6057, 59syl5eq 2790 . . . . 5 (𝜑 → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹𝑋))
61 ftalem7.6 . . . . 5 (𝜑 → (𝐹𝑋) ≠ 0)
6260, 61eqnetrd 3008 . . . 4 (𝜑 → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) ≠ 0)
631, 2, 40, 51, 62ftalem6 25960 . . 3 (𝜑 → ∃𝑦 ∈ ℂ (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)))
64 id 22 . . . . . 6 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
65 addcl 10811 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑦 + 𝑋) ∈ ℂ)
6664, 4, 65syl2anr 600 . . . . 5 ((𝜑𝑦 ∈ ℂ) → (𝑦 + 𝑋) ∈ ℂ)
67 fvoveq1 7236 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐹‘(𝑧 + 𝑋)) = (𝐹‘(𝑦 + 𝑋)))
68 fvex 6730 . . . . . . . . . . 11 (𝐹‘(𝑦 + 𝑋)) ∈ V
6967, 54, 68fvmpt 6818 . . . . . . . . . 10 (𝑦 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦) = (𝐹‘(𝑦 + 𝑋)))
7069adantl 485 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦) = (𝐹‘(𝑦 + 𝑋)))
7170fveq2d 6721 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) = (abs‘(𝐹‘(𝑦 + 𝑋))))
7260adantr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹𝑋))
7372fveq2d 6721 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) = (abs‘(𝐹𝑋)))
7471, 73breq12d 5066 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) ↔ (abs‘(𝐹‘(𝑦 + 𝑋))) < (abs‘(𝐹𝑋))))
7525adantr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
7675, 66ffvelrnd 6905 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝐹‘(𝑦 + 𝑋)) ∈ ℂ)
7776abscld 15000 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘(𝐹‘(𝑦 + 𝑋))) ∈ ℝ)
7825, 4ffvelrnd 6905 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ℂ)
7978abscld 15000 . . . . . . . . 9 (𝜑 → (abs‘(𝐹𝑋)) ∈ ℝ)
8079adantr 484 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘(𝐹𝑋)) ∈ ℝ)
8177, 80ltnled 10979 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → ((abs‘(𝐹‘(𝑦 + 𝑋))) < (abs‘(𝐹𝑋)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8274, 81bitrd 282 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8382biimpd 232 . . . . 5 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
84 2fveq3 6722 . . . . . . . 8 (𝑥 = (𝑦 + 𝑋) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝑦 + 𝑋))))
8584breq2d 5065 . . . . . . 7 (𝑥 = (𝑦 + 𝑋) → ((abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8685notbid 321 . . . . . 6 (𝑥 = (𝑦 + 𝑋) → (¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8786rspcev 3537 . . . . 5 (((𝑦 + 𝑋) ∈ ℂ ∧ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
8866, 83, 87syl6an 684 . . . 4 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥))))
8988rexlimdva 3203 . . 3 (𝜑 → (∃𝑦 ∈ ℂ (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥))))
9063, 89mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
91 rexnal 3160 . 2 (∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
9290, 91sylib 221 1 (𝜑 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  Vcvv 3408  {csn 4541   class class class wbr 5053  cmpt 5135   I cid 5454   × cxp 5549  ccnv 5550  cres 5553  cima 5554  ccom 5555  wf 6376  cfv 6380  (class class class)co 7213  f cof 7467  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cle 10868  cmin 11062  -cneg 11063  cn 11830  abscabs 14797  Polycply 25078  Xpcidp 25079  coeffccoe 25080  degcdgr 25081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-0p 24567  df-limc 24763  df-dv 24764  df-ply 25082  df-idp 25083  df-coe 25084  df-dgr 25085  df-log 25445  df-cxp 25446
This theorem is referenced by:  fta  25962
  Copyright terms: Public domain W3C validator