MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylply2 Structured version   Visualization version   GIF version

Theorem taylply2 25536
Description: The Taylor polynomial is a polynomial of degree (at most) 𝑁. This version of taylply 25537 shows that the coefficients of 𝑇 are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
taylpfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylpfval.f (𝜑𝐹:𝐴⟶ℂ)
taylpfval.a (𝜑𝐴𝑆)
taylpfval.n (𝜑𝑁 ∈ ℕ0)
taylpfval.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
taylpfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
taylply2.1 (𝜑𝐷 ∈ (SubRing‘ℂfld))
taylply2.2 (𝜑𝐵𝐷)
taylply2.3 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷)
Assertion
Ref Expression
taylply2 (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝐷,𝑘   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem taylply2
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylpfval.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylpfval.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
3 taylpfval.a . . . . 5 (𝜑𝐴𝑆)
4 taylpfval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
5 taylpfval.b . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
6 taylpfval.t . . . . 5 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
71, 2, 3, 4, 5, 6taylpfval 25533 . . . 4 (𝜑𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
8 simpr 485 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
9 cnex 10961 . . . . . . . . . . . . 13 ℂ ∈ V
109a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
11 elpm2r 8642 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
1210, 1, 2, 3, 11syl22anc 836 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
13 dvnbss 25101 . . . . . . . . . . 11 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
141, 12, 4, 13syl3anc 1370 . . . . . . . . . 10 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
152, 14fssdmd 6628 . . . . . . . . 9 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ 𝐴)
16 recnprss 25077 . . . . . . . . . . 11 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
171, 16syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
183, 17sstrd 3932 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
1915, 18sstrd 3932 . . . . . . . 8 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ ℂ)
2019, 5sseldd 3923 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
2120adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
228, 21subcld 11341 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
23 df-idp 25359 . . . . . . . 8 Xp = ( I ↾ ℂ)
24 mptresid 5961 . . . . . . . 8 ( I ↾ ℂ) = (𝑥 ∈ ℂ ↦ 𝑥)
2523, 24eqtri 2767 . . . . . . 7 Xp = (𝑥 ∈ ℂ ↦ 𝑥)
2625a1i 11 . . . . . 6 (𝜑Xp = (𝑥 ∈ ℂ ↦ 𝑥))
27 fconstmpt 5650 . . . . . . 7 (ℂ × {𝐵}) = (𝑥 ∈ ℂ ↦ 𝐵)
2827a1i 11 . . . . . 6 (𝜑 → (ℂ × {𝐵}) = (𝑥 ∈ ℂ ↦ 𝐵))
2910, 8, 21, 26, 28offval2 7562 . . . . 5 (𝜑 → (Xpf − (ℂ × {𝐵})) = (𝑥 ∈ ℂ ↦ (𝑥𝐵)))
30 eqidd 2740 . . . . 5 (𝜑 → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))))
31 oveq1 7291 . . . . . . 7 (𝑦 = (𝑥𝐵) → (𝑦𝑘) = ((𝑥𝐵)↑𝑘))
3231oveq2d 7300 . . . . . 6 (𝑦 = (𝑥𝐵) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
3332sumeq2sdv 15425 . . . . 5 (𝑦 = (𝑥𝐵) → Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
3422, 29, 30, 33fmptco 7010 . . . 4 (𝜑 → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵}))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
357, 34eqtr4d 2782 . . 3 (𝜑𝑇 = ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵}))))
36 taylply2.1 . . . . . 6 (𝜑𝐷 ∈ (SubRing‘ℂfld))
37 cnfldbas 20610 . . . . . . 7 ℂ = (Base‘ℂfld)
3837subrgss 20034 . . . . . 6 (𝐷 ∈ (SubRing‘ℂfld) → 𝐷 ⊆ ℂ)
3936, 38syl 17 . . . . 5 (𝜑𝐷 ⊆ ℂ)
40 taylply2.3 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷)
4139, 4, 40elplyd 25372 . . . 4 (𝜑 → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∈ (Poly‘𝐷))
42 cnfld1 20632 . . . . . . . 8 1 = (1r‘ℂfld)
4342subrg1cl 20041 . . . . . . 7 (𝐷 ∈ (SubRing‘ℂfld) → 1 ∈ 𝐷)
4436, 43syl 17 . . . . . 6 (𝜑 → 1 ∈ 𝐷)
45 plyid 25379 . . . . . 6 ((𝐷 ⊆ ℂ ∧ 1 ∈ 𝐷) → Xp ∈ (Poly‘𝐷))
4639, 44, 45syl2anc 584 . . . . 5 (𝜑Xp ∈ (Poly‘𝐷))
47 taylply2.2 . . . . . 6 (𝜑𝐵𝐷)
48 plyconst 25376 . . . . . 6 ((𝐷 ⊆ ℂ ∧ 𝐵𝐷) → (ℂ × {𝐵}) ∈ (Poly‘𝐷))
4939, 47, 48syl2anc 584 . . . . 5 (𝜑 → (ℂ × {𝐵}) ∈ (Poly‘𝐷))
50 subrgsubg 20039 . . . . . . 7 (𝐷 ∈ (SubRing‘ℂfld) → 𝐷 ∈ (SubGrp‘ℂfld))
5136, 50syl 17 . . . . . 6 (𝜑𝐷 ∈ (SubGrp‘ℂfld))
52 cnfldadd 20611 . . . . . . . 8 + = (+g‘ℂfld)
5352subgcl 18774 . . . . . . 7 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → (𝑢 + 𝑣) ∈ 𝐷)
54533expb 1119 . . . . . 6 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 + 𝑣) ∈ 𝐷)
5551, 54sylan 580 . . . . 5 ((𝜑 ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 + 𝑣) ∈ 𝐷)
56 cnfldmul 20612 . . . . . . . 8 · = (.r‘ℂfld)
5756subrgmcl 20045 . . . . . . 7 ((𝐷 ∈ (SubRing‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → (𝑢 · 𝑣) ∈ 𝐷)
58573expb 1119 . . . . . 6 ((𝐷 ∈ (SubRing‘ℂfld) ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 · 𝑣) ∈ 𝐷)
5936, 58sylan 580 . . . . 5 ((𝜑 ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 · 𝑣) ∈ 𝐷)
60 ax-1cn 10938 . . . . . . 7 1 ∈ ℂ
61 cnfldneg 20633 . . . . . . 7 (1 ∈ ℂ → ((invg‘ℂfld)‘1) = -1)
6260, 61ax-mp 5 . . . . . 6 ((invg‘ℂfld)‘1) = -1
63 eqid 2739 . . . . . . . 8 (invg‘ℂfld) = (invg‘ℂfld)
6463subginvcl 18773 . . . . . . 7 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐷) → ((invg‘ℂfld)‘1) ∈ 𝐷)
6551, 44, 64syl2anc 584 . . . . . 6 (𝜑 → ((invg‘ℂfld)‘1) ∈ 𝐷)
6662, 65eqeltrrid 2845 . . . . 5 (𝜑 → -1 ∈ 𝐷)
6746, 49, 55, 59, 66plysub 25389 . . . 4 (𝜑 → (Xpf − (ℂ × {𝐵})) ∈ (Poly‘𝐷))
6841, 67, 55, 59plyco 25411 . . 3 (𝜑 → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵}))) ∈ (Poly‘𝐷))
6935, 68eqeltrd 2840 . 2 (𝜑𝑇 ∈ (Poly‘𝐷))
7035fveq2d 6787 . . . 4 (𝜑 → (deg‘𝑇) = (deg‘((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵})))))
71 eqid 2739 . . . . 5 (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))))
72 eqid 2739 . . . . 5 (deg‘(Xpf − (ℂ × {𝐵}))) = (deg‘(Xpf − (ℂ × {𝐵})))
7371, 72, 41, 67dgrco 25445 . . . 4 (𝜑 → (deg‘((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵})))) = ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xpf − (ℂ × {𝐵})))))
74 eqid 2739 . . . . . . . . 9 (Xpf − (ℂ × {𝐵})) = (Xpf − (ℂ × {𝐵}))
7574plyremlem 25473 . . . . . . . 8 (𝐵 ∈ ℂ → ((Xpf − (ℂ × {𝐵})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐵}))) = 1 ∧ ((Xpf − (ℂ × {𝐵})) “ {0}) = {𝐵}))
7620, 75syl 17 . . . . . . 7 (𝜑 → ((Xpf − (ℂ × {𝐵})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐵}))) = 1 ∧ ((Xpf − (ℂ × {𝐵})) “ {0}) = {𝐵}))
7776simp2d 1142 . . . . . 6 (𝜑 → (deg‘(Xpf − (ℂ × {𝐵}))) = 1)
7877oveq2d 7300 . . . . 5 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xpf − (ℂ × {𝐵})))) = ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · 1))
79 dgrcl 25403 . . . . . . . 8 ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∈ (Poly‘𝐷) → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℕ0)
8041, 79syl 17 . . . . . . 7 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℕ0)
8180nn0cnd 12304 . . . . . 6 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℂ)
8281mulid1d 11001 . . . . 5 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · 1) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
8378, 82eqtrd 2779 . . . 4 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xpf − (ℂ × {𝐵})))) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
8470, 73, 833eqtrd 2783 . . 3 (𝜑 → (deg‘𝑇) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
851adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
8612adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
87 elfznn0 13358 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
8887adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
89 dvnf 25100 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
9085, 86, 88, 89syl3anc 1370 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
91 simpr 485 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁))
92 dvn2bss 25103 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
9385, 86, 91, 92syl3anc 1370 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
945adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
9593, 94sseldd 3923 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
9690, 95ffvelrnd 6971 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
9788faccld 14007 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
9897nncnd 11998 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℂ)
9997nnne0d 12032 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ≠ 0)
10096, 98, 99divcld 11760 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
10141, 4, 100, 30dgrle 25413 . . 3 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ≤ 𝑁)
10284, 101eqbrtrd 5097 . 2 (𝜑 → (deg‘𝑇) ≤ 𝑁)
10369, 102jca 512 1 (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3433  wss 3888  {csn 4562  {cpr 4564   class class class wbr 5075  cmpt 5158   I cid 5489   × cxp 5588  ccnv 5589  dom cdm 5590  cres 5592  cima 5593  ccom 5594  wf 6433  cfv 6437  (class class class)co 7284  f cof 7540  pm cpm 8625  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  cle 11019  cmin 11214  -cneg 11215   / cdiv 11641  0cn0 12242  ...cfz 13248  cexp 13791  !cfa 13996  Σcsu 15406  invgcminusg 18587  SubGrpcsubg 18758  SubRingcsubrg 20029  fldccnfld 20606   D𝑛 cdvn 25037  Polycply 25354  Xpcidp 25355  degcdgr 25357   Tayl ctayl 25521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-map 8626  df-pm 8627  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-seq 13731  df-exp 13792  df-fac 13997  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206  df-rlim 15207  df-sum 15407  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-grp 18589  df-minusg 18590  df-subg 18761  df-cntz 18932  df-cmn 19397  df-abl 19398  df-mgp 19730  df-ur 19747  df-ring 19794  df-cring 19795  df-subrg 20031  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cnp 22388  df-haus 22475  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-tsms 23287  df-xms 23482  df-ms 23483  df-0p 24843  df-limc 25039  df-dv 25040  df-dvn 25041  df-ply 25358  df-idp 25359  df-coe 25360  df-dgr 25361  df-tayl 25523
This theorem is referenced by:  taylply  25537  taylthlem2  25542
  Copyright terms: Public domain W3C validator