MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylply2 Structured version   Visualization version   GIF version

Theorem taylply2 26427
Description: The Taylor polynomial is a polynomial of degree (at most) 𝑁. This version of taylply 26429 shows that the coefficients of 𝑇 are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11264. (Revised by GG, 30-Apr-2025.)
Hypotheses
Ref Expression
taylpfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylpfval.f (𝜑𝐹:𝐴⟶ℂ)
taylpfval.a (𝜑𝐴𝑆)
taylpfval.n (𝜑𝑁 ∈ ℕ0)
taylpfval.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
taylpfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
taylply2.1 (𝜑𝐷 ∈ (SubRing‘ℂfld))
taylply2.2 (𝜑𝐵𝐷)
taylply2.3 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷)
Assertion
Ref Expression
taylply2 (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝐷,𝑘   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem taylply2
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylpfval.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylpfval.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
3 taylpfval.a . . . . 5 (𝜑𝐴𝑆)
4 taylpfval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
5 taylpfval.b . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
6 taylpfval.t . . . . 5 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
71, 2, 3, 4, 5, 6taylpfval 26424 . . . 4 (𝜑𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
8 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
9 cnex 11265 . . . . . . . . . . . . 13 ℂ ∈ V
109a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
11 elpm2r 8903 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
1210, 1, 2, 3, 11syl22anc 838 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
13 dvnbss 25984 . . . . . . . . . . 11 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
141, 12, 4, 13syl3anc 1371 . . . . . . . . . 10 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
152, 14fssdmd 6765 . . . . . . . . 9 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ 𝐴)
16 recnprss 25959 . . . . . . . . . . 11 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
171, 16syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
183, 17sstrd 4019 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
1915, 18sstrd 4019 . . . . . . . 8 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ ℂ)
2019, 5sseldd 4009 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
2120adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
228, 21subcld 11647 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
23 df-idp 26248 . . . . . . . 8 Xp = ( I ↾ ℂ)
24 mptresid 6080 . . . . . . . 8 ( I ↾ ℂ) = (𝑥 ∈ ℂ ↦ 𝑥)
2523, 24eqtri 2768 . . . . . . 7 Xp = (𝑥 ∈ ℂ ↦ 𝑥)
2625a1i 11 . . . . . 6 (𝜑Xp = (𝑥 ∈ ℂ ↦ 𝑥))
27 fconstmpt 5762 . . . . . . 7 (ℂ × {𝐵}) = (𝑥 ∈ ℂ ↦ 𝐵)
2827a1i 11 . . . . . 6 (𝜑 → (ℂ × {𝐵}) = (𝑥 ∈ ℂ ↦ 𝐵))
2910, 8, 21, 26, 28offval2 7734 . . . . 5 (𝜑 → (Xpf − (ℂ × {𝐵})) = (𝑥 ∈ ℂ ↦ (𝑥𝐵)))
30 eqidd 2741 . . . . 5 (𝜑 → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))))
31 oveq1 7455 . . . . . . 7 (𝑦 = (𝑥𝐵) → (𝑦𝑘) = ((𝑥𝐵)↑𝑘))
3231oveq2d 7464 . . . . . 6 (𝑦 = (𝑥𝐵) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
3332sumeq2sdv 15751 . . . . 5 (𝑦 = (𝑥𝐵) → Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
3422, 29, 30, 33fmptco 7163 . . . 4 (𝜑 → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵}))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
357, 34eqtr4d 2783 . . 3 (𝜑𝑇 = ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵}))))
36 taylply2.1 . . . . . 6 (𝜑𝐷 ∈ (SubRing‘ℂfld))
37 cnfldbas 21391 . . . . . . 7 ℂ = (Base‘ℂfld)
3837subrgss 20600 . . . . . 6 (𝐷 ∈ (SubRing‘ℂfld) → 𝐷 ⊆ ℂ)
3936, 38syl 17 . . . . 5 (𝜑𝐷 ⊆ ℂ)
40 taylply2.3 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷)
4139, 4, 40elplyd 26261 . . . 4 (𝜑 → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∈ (Poly‘𝐷))
42 cnfld1 21429 . . . . . . . 8 1 = (1r‘ℂfld)
4342subrg1cl 20608 . . . . . . 7 (𝐷 ∈ (SubRing‘ℂfld) → 1 ∈ 𝐷)
4436, 43syl 17 . . . . . 6 (𝜑 → 1 ∈ 𝐷)
45 plyid 26268 . . . . . 6 ((𝐷 ⊆ ℂ ∧ 1 ∈ 𝐷) → Xp ∈ (Poly‘𝐷))
4639, 44, 45syl2anc 583 . . . . 5 (𝜑Xp ∈ (Poly‘𝐷))
47 taylply2.2 . . . . . 6 (𝜑𝐵𝐷)
48 plyconst 26265 . . . . . 6 ((𝐷 ⊆ ℂ ∧ 𝐵𝐷) → (ℂ × {𝐵}) ∈ (Poly‘𝐷))
4939, 47, 48syl2anc 583 . . . . 5 (𝜑 → (ℂ × {𝐵}) ∈ (Poly‘𝐷))
50 subrgsubg 20605 . . . . . . 7 (𝐷 ∈ (SubRing‘ℂfld) → 𝐷 ∈ (SubGrp‘ℂfld))
5136, 50syl 17 . . . . . 6 (𝜑𝐷 ∈ (SubGrp‘ℂfld))
52 cnfldadd 21393 . . . . . . . 8 + = (+g‘ℂfld)
5352subgcl 19176 . . . . . . 7 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → (𝑢 + 𝑣) ∈ 𝐷)
54533expb 1120 . . . . . 6 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 + 𝑣) ∈ 𝐷)
5551, 54sylan 579 . . . . 5 ((𝜑 ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 + 𝑣) ∈ 𝐷)
5638sseld 4007 . . . . . . . . . . 11 (𝐷 ∈ (SubRing‘ℂfld) → (𝑢𝐷𝑢 ∈ ℂ))
5756a1dd 50 . . . . . . . . . 10 (𝐷 ∈ (SubRing‘ℂfld) → (𝑢𝐷 → (𝑣𝐷𝑢 ∈ ℂ)))
58573imp 1111 . . . . . . . . 9 ((𝐷 ∈ (SubRing‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → 𝑢 ∈ ℂ)
5938sseld 4007 . . . . . . . . . . 11 (𝐷 ∈ (SubRing‘ℂfld) → (𝑣𝐷𝑣 ∈ ℂ))
6059a1d 25 . . . . . . . . . 10 (𝐷 ∈ (SubRing‘ℂfld) → (𝑢𝐷 → (𝑣𝐷𝑣 ∈ ℂ)))
61603imp 1111 . . . . . . . . 9 ((𝐷 ∈ (SubRing‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → 𝑣 ∈ ℂ)
62 ovmpot 7611 . . . . . . . . 9 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = (𝑢 · 𝑣))
6358, 61, 62syl2anc 583 . . . . . . . 8 ((𝐷 ∈ (SubRing‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = (𝑢 · 𝑣))
64 mpocnfldmul 21394 . . . . . . . . 9 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (.r‘ℂfld)
6564subrgmcl 20612 . . . . . . . 8 ((𝐷 ∈ (SubRing‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) ∈ 𝐷)
6663, 65eqeltrrd 2845 . . . . . . 7 ((𝐷 ∈ (SubRing‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → (𝑢 · 𝑣) ∈ 𝐷)
67663expb 1120 . . . . . 6 ((𝐷 ∈ (SubRing‘ℂfld) ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 · 𝑣) ∈ 𝐷)
6836, 67sylan 579 . . . . 5 ((𝜑 ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 · 𝑣) ∈ 𝐷)
69 ax-1cn 11242 . . . . . . 7 1 ∈ ℂ
70 cnfldneg 21431 . . . . . . 7 (1 ∈ ℂ → ((invg‘ℂfld)‘1) = -1)
7169, 70ax-mp 5 . . . . . 6 ((invg‘ℂfld)‘1) = -1
72 eqid 2740 . . . . . . . 8 (invg‘ℂfld) = (invg‘ℂfld)
7372subginvcl 19175 . . . . . . 7 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐷) → ((invg‘ℂfld)‘1) ∈ 𝐷)
7451, 44, 73syl2anc 583 . . . . . 6 (𝜑 → ((invg‘ℂfld)‘1) ∈ 𝐷)
7571, 74eqeltrrid 2849 . . . . 5 (𝜑 → -1 ∈ 𝐷)
7646, 49, 55, 68, 75plysub 26278 . . . 4 (𝜑 → (Xpf − (ℂ × {𝐵})) ∈ (Poly‘𝐷))
7741, 76, 55, 68plyco 26300 . . 3 (𝜑 → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵}))) ∈ (Poly‘𝐷))
7835, 77eqeltrd 2844 . 2 (𝜑𝑇 ∈ (Poly‘𝐷))
7935fveq2d 6924 . . . 4 (𝜑 → (deg‘𝑇) = (deg‘((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵})))))
80 eqid 2740 . . . . 5 (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))))
81 eqid 2740 . . . . 5 (deg‘(Xpf − (ℂ × {𝐵}))) = (deg‘(Xpf − (ℂ × {𝐵})))
8280, 81, 41, 76dgrco 26335 . . . 4 (𝜑 → (deg‘((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵})))) = ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xpf − (ℂ × {𝐵})))))
83 eqid 2740 . . . . . . . . 9 (Xpf − (ℂ × {𝐵})) = (Xpf − (ℂ × {𝐵}))
8483plyremlem 26364 . . . . . . . 8 (𝐵 ∈ ℂ → ((Xpf − (ℂ × {𝐵})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐵}))) = 1 ∧ ((Xpf − (ℂ × {𝐵})) “ {0}) = {𝐵}))
8520, 84syl 17 . . . . . . 7 (𝜑 → ((Xpf − (ℂ × {𝐵})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐵}))) = 1 ∧ ((Xpf − (ℂ × {𝐵})) “ {0}) = {𝐵}))
8685simp2d 1143 . . . . . 6 (𝜑 → (deg‘(Xpf − (ℂ × {𝐵}))) = 1)
8786oveq2d 7464 . . . . 5 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xpf − (ℂ × {𝐵})))) = ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · 1))
88 dgrcl 26292 . . . . . . . 8 ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∈ (Poly‘𝐷) → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℕ0)
8941, 88syl 17 . . . . . . 7 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℕ0)
9089nn0cnd 12615 . . . . . 6 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℂ)
9190mulridd 11307 . . . . 5 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · 1) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
9287, 91eqtrd 2780 . . . 4 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xpf − (ℂ × {𝐵})))) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
9379, 82, 923eqtrd 2784 . . 3 (𝜑 → (deg‘𝑇) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
94 elfznn0 13677 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
95 dvnf 25983 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
961, 12, 94, 95syl2an3an 1422 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
97 id 22 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ (0...𝑁))
98 dvn2bss 25986 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
991, 12, 97, 98syl2an3an 1422 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
1005adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
10199, 100sseldd 4009 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
10296, 101ffvelcdmd 7119 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
10394adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
104103faccld 14333 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
105104nncnd 12309 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℂ)
106104nnne0d 12343 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ≠ 0)
107102, 105, 106divcld 12070 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
10841, 4, 107, 30dgrle 26302 . . 3 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ≤ 𝑁)
10993, 108eqbrtrd 5188 . 2 (𝜑 → (deg‘𝑇) ≤ 𝑁)
11078, 109jca 511 1 (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  {csn 4648  {cpr 4650   class class class wbr 5166  cmpt 5249   I cid 5592   × cxp 5698  ccnv 5699  dom cdm 5700  cres 5702  cima 5703  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  f cof 7712  pm cpm 8885  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  0cn0 12553  ...cfz 13567  cexp 14112  !cfa 14322  Σcsu 15734  invgcminusg 18974  SubGrpcsubg 19160  SubRingcsubrg 20595  fldccnfld 21387   D𝑛 cdvn 25919  Polycply 26243  Xpcidp 26244  degcdgr 26246   Tayl ctayl 26412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cnp 23257  df-haus 23344  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-tsms 24156  df-xms 24351  df-ms 24352  df-0p 25724  df-limc 25921  df-dv 25922  df-dvn 25923  df-ply 26247  df-idp 26248  df-coe 26249  df-dgr 26250  df-tayl 26414
This theorem is referenced by:  taylply  26429  taylthlem2  26434  taylthlem2OLD  26435
  Copyright terms: Public domain W3C validator