Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeidp | Structured version Visualization version GIF version |
Description: The coefficients of the identity function. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
coeidp | ⊢ (𝐴 ∈ ℕ0 → ((coeff‘Xp)‘𝐴) = if(𝐴 = 1, 1, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10647 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1nn0 11964 | . 2 ⊢ 1 ∈ ℕ0 | |
3 | mptresid 5896 | . . . 4 ⊢ ( I ↾ ℂ) = (𝑧 ∈ ℂ ↦ 𝑧) | |
4 | df-idp 24900 | . . . 4 ⊢ Xp = ( I ↾ ℂ) | |
5 | exp1 13499 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ → (𝑧↑1) = 𝑧) | |
6 | 5 | oveq2d 7173 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → (1 · (𝑧↑1)) = (1 · 𝑧)) |
7 | mulid2 10692 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → (1 · 𝑧) = 𝑧) | |
8 | 6, 7 | eqtrd 2794 | . . . . 5 ⊢ (𝑧 ∈ ℂ → (1 · (𝑧↑1)) = 𝑧) |
9 | 8 | mpteq2ia 5128 | . . . 4 ⊢ (𝑧 ∈ ℂ ↦ (1 · (𝑧↑1))) = (𝑧 ∈ ℂ ↦ 𝑧) |
10 | 3, 4, 9 | 3eqtr4i 2792 | . . 3 ⊢ Xp = (𝑧 ∈ ℂ ↦ (1 · (𝑧↑1))) |
11 | 10 | coe1term 24970 | . 2 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0) → ((coeff‘Xp)‘𝐴) = if(𝐴 = 1, 1, 0)) |
12 | 1, 2, 11 | mp3an12 1449 | 1 ⊢ (𝐴 ∈ ℕ0 → ((coeff‘Xp)‘𝐴) = if(𝐴 = 1, 1, 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ifcif 4424 ↦ cmpt 5117 I cid 5434 ↾ cres 5531 ‘cfv 6341 (class class class)co 7157 ℂcc 10587 0cc0 10589 1c1 10590 · cmul 10594 ℕ0cn0 11948 ↑cexp 13493 Xpcidp 24896 coeffccoe 24897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-inf2 9151 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-pre-sup 10667 ax-addf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-se 5489 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-isom 6350 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-of 7412 df-om 7587 df-1st 7700 df-2nd 7701 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-er 8306 df-map 8425 df-pm 8426 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-sup 8953 df-inf 8954 df-oi 9021 df-card 9415 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-3 11752 df-n0 11949 df-z 12035 df-uz 12297 df-rp 12445 df-fz 12954 df-fzo 13097 df-fl 13225 df-seq 13433 df-exp 13494 df-hash 13755 df-cj 14520 df-re 14521 df-im 14522 df-sqrt 14656 df-abs 14657 df-clim 14907 df-rlim 14908 df-sum 15105 df-0p 24385 df-ply 24899 df-idp 24900 df-coe 24901 df-dgr 24902 |
This theorem is referenced by: vieta1lem2 25021 plymulx0 32059 |
Copyright terms: Public domain | W3C validator |