Detailed syntax breakdown of Definition df-smo
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cA | . . 3
class 𝐴 | 
| 2 | 1 | wsmo 8386 | . 2
wff Smo 𝐴 | 
| 3 | 1 | cdm 5684 | . . . 4
class dom 𝐴 | 
| 4 |  | con0 6383 | . . . 4
class
On | 
| 5 | 3, 4, 1 | wf 6556 | . . 3
wff 𝐴:dom 𝐴⟶On | 
| 6 | 3 | word 6382 | . . 3
wff Ord dom
𝐴 | 
| 7 |  | vx | . . . . . . 7
setvar 𝑥 | 
| 8 |  | vy | . . . . . . 7
setvar 𝑦 | 
| 9 | 7, 8 | wel 2108 | . . . . . 6
wff 𝑥 ∈ 𝑦 | 
| 10 | 7 | cv 1538 | . . . . . . . 8
class 𝑥 | 
| 11 | 10, 1 | cfv 6560 | . . . . . . 7
class (𝐴‘𝑥) | 
| 12 | 8 | cv 1538 | . . . . . . . 8
class 𝑦 | 
| 13 | 12, 1 | cfv 6560 | . . . . . . 7
class (𝐴‘𝑦) | 
| 14 | 11, 13 | wcel 2107 | . . . . . 6
wff (𝐴‘𝑥) ∈ (𝐴‘𝑦) | 
| 15 | 9, 14 | wi 4 | . . . . 5
wff (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) | 
| 16 | 15, 8, 3 | wral 3060 | . . . 4
wff
∀𝑦 ∈ dom
𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) | 
| 17 | 16, 7, 3 | wral 3060 | . . 3
wff
∀𝑥 ∈ dom
𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) | 
| 18 | 5, 6, 17 | w3a 1086 | . 2
wff (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) | 
| 19 | 2, 18 | wb 206 | 1
wff (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) |