Detailed syntax breakdown of Definition df-smo
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | 1 | wsmo 8364 |
. 2
wff Smo 𝐴 |
| 3 | 1 | cdm 5659 |
. . . 4
class dom 𝐴 |
| 4 | | con0 6357 |
. . . 4
class
On |
| 5 | 3, 4, 1 | wf 6532 |
. . 3
wff 𝐴:dom 𝐴⟶On |
| 6 | 3 | word 6356 |
. . 3
wff Ord dom
𝐴 |
| 7 | | vx |
. . . . . . 7
setvar 𝑥 |
| 8 | | vy |
. . . . . . 7
setvar 𝑦 |
| 9 | 7, 8 | wel 2110 |
. . . . . 6
wff 𝑥 ∈ 𝑦 |
| 10 | 7 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 11 | 10, 1 | cfv 6536 |
. . . . . . 7
class (𝐴‘𝑥) |
| 12 | 8 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 13 | 12, 1 | cfv 6536 |
. . . . . . 7
class (𝐴‘𝑦) |
| 14 | 11, 13 | wcel 2109 |
. . . . . 6
wff (𝐴‘𝑥) ∈ (𝐴‘𝑦) |
| 15 | 9, 14 | wi 4 |
. . . . 5
wff (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) |
| 16 | 15, 8, 3 | wral 3052 |
. . . 4
wff
∀𝑦 ∈ dom
𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) |
| 17 | 16, 7, 3 | wral 3052 |
. . 3
wff
∀𝑥 ∈ dom
𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) |
| 18 | 5, 6, 17 | w3a 1086 |
. 2
wff (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
| 19 | 2, 18 | wb 206 |
1
wff (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) |