Step | Hyp | Ref
| Expression |
1 | | isof1o 7194 |
. . . 4
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
2 | | f1of 6716 |
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴⟶𝐵) |
4 | | ffdm 6630 |
. . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
5 | 4 | simpld 495 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → 𝐹:dom 𝐹⟶𝐵) |
6 | | fss 6617 |
. . . . 5
⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ 𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On) |
7 | 5, 6 | sylan 580 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On) |
8 | 7 | 3adant2 1130 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On) |
9 | 3, 8 | syl3an1 1162 |
. 2
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On) |
10 | | fdm 6609 |
. . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
11 | 10 | eqcomd 2744 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → 𝐴 = dom 𝐹) |
12 | | ordeq 6273 |
. . . . 5
⊢ (𝐴 = dom 𝐹 → (Ord 𝐴 ↔ Ord dom 𝐹)) |
13 | 1, 2, 11, 12 | 4syl 19 |
. . . 4
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → (Ord 𝐴 ↔ Ord dom 𝐹)) |
14 | 13 | biimpa 477 |
. . 3
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴) → Ord dom 𝐹) |
15 | 14 | 3adant3 1131 |
. 2
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → Ord dom 𝐹) |
16 | 10 | eleq2d 2824 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴)) |
17 | 10 | eleq2d 2824 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → (𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴)) |
18 | 16, 17 | anbi12d 631 |
. . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) |
19 | 1, 2, 18 | 3syl 18 |
. . . . 5
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) |
20 | | isorel 7197 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 E 𝑦 ↔ (𝐹‘𝑥) E (𝐹‘𝑦))) |
21 | | epel 5498 |
. . . . . . . 8
⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) |
22 | | fvex 6787 |
. . . . . . . . 9
⊢ (𝐹‘𝑦) ∈ V |
23 | 22 | epeli 5497 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) E (𝐹‘𝑦) ↔ (𝐹‘𝑥) ∈ (𝐹‘𝑦)) |
24 | 20, 21, 23 | 3bitr3g 313 |
. . . . . . 7
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ↔ (𝐹‘𝑥) ∈ (𝐹‘𝑦))) |
25 | 24 | biimpd 228 |
. . . . . 6
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦))) |
26 | 25 | ex 413 |
. . . . 5
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦)))) |
27 | 19, 26 | sylbid 239 |
. . . 4
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) → (𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦)))) |
28 | 27 | ralrimivv 3122 |
. . 3
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹(𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦))) |
29 | 28 | 3ad2ant1 1132 |
. 2
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹(𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦))) |
30 | | df-smo 8177 |
. 2
⊢ (Smo
𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹(𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦)))) |
31 | 9, 15, 29, 30 | syl3anbrc 1342 |
1
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → Smo 𝐹) |