MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoiso Structured version   Visualization version   GIF version

Theorem smoiso 7982
Description: If 𝐹 is an isomorphism from an ordinal 𝐴 onto 𝐵, which is a subset of the ordinals, then 𝐹 is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.)
Assertion
Ref Expression
smoiso ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)

Proof of Theorem smoiso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 7055 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
2 f1of 6590 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
31, 2syl 17 . . 3 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴𝐵)
4 ffdm 6510 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
54simpld 498 . . . . 5 (𝐹:𝐴𝐵𝐹:dom 𝐹𝐵)
6 fss 6501 . . . . 5 ((𝐹:dom 𝐹𝐵𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
75, 6sylan 583 . . . 4 ((𝐹:𝐴𝐵𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
873adant2 1128 . . 3 ((𝐹:𝐴𝐵 ∧ Ord 𝐴𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
93, 8syl3an1 1160 . 2 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
10 fdm 6495 . . . . . 6 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
1110eqcomd 2804 . . . . 5 (𝐹:𝐴𝐵𝐴 = dom 𝐹)
12 ordeq 6166 . . . . 5 (𝐴 = dom 𝐹 → (Ord 𝐴 ↔ Ord dom 𝐹))
131, 2, 11, 124syl 19 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) → (Ord 𝐴 ↔ Ord dom 𝐹))
1413biimpa 480 . . 3 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴) → Ord dom 𝐹)
15143adant3 1129 . 2 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Ord dom 𝐹)
1610eleq2d 2875 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑥 ∈ dom 𝐹𝑥𝐴))
1710eleq2d 2875 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑦 ∈ dom 𝐹𝑦𝐴))
1816, 17anbi12d 633 . . . . . 6 (𝐹:𝐴𝐵 → ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ↔ (𝑥𝐴𝑦𝐴)))
191, 2, 183syl 18 . . . . 5 (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ↔ (𝑥𝐴𝑦𝐴)))
20 isorel 7058 . . . . . . . 8 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
21 epel 5433 . . . . . . . 8 (𝑥 E 𝑦𝑥𝑦)
22 fvex 6658 . . . . . . . . 9 (𝐹𝑦) ∈ V
2322epeli 5432 . . . . . . . 8 ((𝐹𝑥) E (𝐹𝑦) ↔ (𝐹𝑥) ∈ (𝐹𝑦))
2420, 21, 233bitr3g 316 . . . . . . 7 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
2524biimpd 232 . . . . . 6 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦)))
2625ex 416 . . . . 5 (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦))))
2719, 26sylbid 243 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) → (𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦))))
2827ralrimivv 3155 . . 3 (𝐹 Isom E , E (𝐴, 𝐵) → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦)))
29283ad2ant1 1130 . 2 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦)))
30 df-smo 7966 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦))))
319, 15, 29, 30syl3anbrc 1340 1 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wss 3881   class class class wbr 5030   E cep 5429  dom cdm 5519  Ord word 6158  Oncon0 6159  wf 6320  1-1-ontowf1o 6323  cfv 6324   Isom wiso 6325  Smo wsmo 7965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-ord 6162  df-iota 6283  df-fn 6327  df-f 6328  df-f1 6329  df-f1o 6331  df-fv 6332  df-isom 6333  df-smo 7966
This theorem is referenced by:  smoiso2  7989
  Copyright terms: Public domain W3C validator