MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoiso Structured version   Visualization version   GIF version

Theorem smoiso 8383
Description: If 𝐹 is an isomorphism from an ordinal 𝐴 onto 𝐵, which is a subset of the ordinals, then 𝐹 is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.)
Assertion
Ref Expression
smoiso ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)

Proof of Theorem smoiso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 7330 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
2 f1of 6838 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
31, 2syl 17 . . 3 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴𝐵)
4 ffdm 6753 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
54simpld 493 . . . . 5 (𝐹:𝐴𝐵𝐹:dom 𝐹𝐵)
6 fss 6739 . . . . 5 ((𝐹:dom 𝐹𝐵𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
75, 6sylan 578 . . . 4 ((𝐹:𝐴𝐵𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
873adant2 1128 . . 3 ((𝐹:𝐴𝐵 ∧ Ord 𝐴𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
93, 8syl3an1 1160 . 2 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
10 fdm 6732 . . . . . 6 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
1110eqcomd 2731 . . . . 5 (𝐹:𝐴𝐵𝐴 = dom 𝐹)
12 ordeq 6378 . . . . 5 (𝐴 = dom 𝐹 → (Ord 𝐴 ↔ Ord dom 𝐹))
131, 2, 11, 124syl 19 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) → (Ord 𝐴 ↔ Ord dom 𝐹))
1413biimpa 475 . . 3 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴) → Ord dom 𝐹)
15143adant3 1129 . 2 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Ord dom 𝐹)
1610eleq2d 2811 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑥 ∈ dom 𝐹𝑥𝐴))
1710eleq2d 2811 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑦 ∈ dom 𝐹𝑦𝐴))
1816, 17anbi12d 630 . . . . . 6 (𝐹:𝐴𝐵 → ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ↔ (𝑥𝐴𝑦𝐴)))
191, 2, 183syl 18 . . . . 5 (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ↔ (𝑥𝐴𝑦𝐴)))
20 isorel 7333 . . . . . . . 8 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
21 epel 5585 . . . . . . . 8 (𝑥 E 𝑦𝑥𝑦)
22 fvex 6909 . . . . . . . . 9 (𝐹𝑦) ∈ V
2322epeli 5584 . . . . . . . 8 ((𝐹𝑥) E (𝐹𝑦) ↔ (𝐹𝑥) ∈ (𝐹𝑦))
2420, 21, 233bitr3g 312 . . . . . . 7 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
2524biimpd 228 . . . . . 6 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦)))
2625ex 411 . . . . 5 (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦))))
2719, 26sylbid 239 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) → (𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦))))
2827ralrimivv 3188 . . 3 (𝐹 Isom E , E (𝐴, 𝐵) → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦)))
29283ad2ant1 1130 . 2 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦)))
30 df-smo 8367 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦))))
319, 15, 29, 30syl3anbrc 1340 1 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wss 3944   class class class wbr 5149   E cep 5581  dom cdm 5678  Ord word 6370  Oncon0 6371  wf 6545  1-1-ontowf1o 6548  cfv 6549   Isom wiso 6550  Smo wsmo 8366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6374  df-iota 6501  df-fn 6552  df-f 6553  df-f1 6554  df-f1o 6556  df-fv 6557  df-isom 6558  df-smo 8367
This theorem is referenced by:  smoiso2  8390
  Copyright terms: Public domain W3C validator