MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsmo2 Structured version   Visualization version   GIF version

Theorem dfsmo2 8386
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
dfsmo2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem dfsmo2
StepHypRef Expression
1 df-smo 8385 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))))
2 ralcom 3287 . . . . . 6 (∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
3 impexp 450 . . . . . . . . 9 (((𝑦 ∈ dom 𝐹𝑦𝑥) → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ (𝑦 ∈ dom 𝐹 → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))))
4 simpr 484 . . . . . . . . . . 11 ((𝑦 ∈ dom 𝐹𝑦𝑥) → 𝑦𝑥)
5 ordtr1 6429 . . . . . . . . . . . . . . 15 (Ord dom 𝐹 → ((𝑦𝑥𝑥 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹))
653impib 1115 . . . . . . . . . . . . . 14 ((Ord dom 𝐹𝑦𝑥𝑥 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹)
763com23 1125 . . . . . . . . . . . . 13 ((Ord dom 𝐹𝑥 ∈ dom 𝐹𝑦𝑥) → 𝑦 ∈ dom 𝐹)
8 simp3 1137 . . . . . . . . . . . . 13 ((Ord dom 𝐹𝑥 ∈ dom 𝐹𝑦𝑥) → 𝑦𝑥)
97, 8jca 511 . . . . . . . . . . . 12 ((Ord dom 𝐹𝑥 ∈ dom 𝐹𝑦𝑥) → (𝑦 ∈ dom 𝐹𝑦𝑥))
1093expia 1120 . . . . . . . . . . 11 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → (𝑦𝑥 → (𝑦 ∈ dom 𝐹𝑦𝑥)))
114, 10impbid2 226 . . . . . . . . . 10 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → ((𝑦 ∈ dom 𝐹𝑦𝑥) ↔ 𝑦𝑥))
1211imbi1d 341 . . . . . . . . 9 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → (((𝑦 ∈ dom 𝐹𝑦𝑥) → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))))
133, 12bitr3id 285 . . . . . . . 8 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → ((𝑦 ∈ dom 𝐹 → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))) ↔ (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))))
1413ralbidv2 3172 . . . . . . 7 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → (∀𝑦 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ ∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1514ralbidva 3174 . . . . . 6 (Ord dom 𝐹 → (∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
162, 15bitrid 283 . . . . 5 (Ord dom 𝐹 → (∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1716pm5.32i 574 . . . 4 ((Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))) ↔ (Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1817anbi2i 623 . . 3 ((𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))) ↔ (𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))))
19 3anass 1094 . . 3 ((𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))) ↔ (𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))))
20 3anass 1094 . . 3 ((𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) ↔ (𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))))
2118, 19, 203bitr4i 303 . 2 ((𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))) ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
221, 21bitri 275 1 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2106  wral 3059  dom cdm 5689  Ord word 6385  Oncon0 6386  wf 6559  cfv 6563  Smo wsmo 8384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-11 2155  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-v 3480  df-ss 3980  df-uni 4913  df-tr 5266  df-ord 6389  df-smo 8385
This theorem is referenced by:  issmo2  8388  smores2  8393  smofvon2  8395
  Copyright terms: Public domain W3C validator