![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issmo | Structured version Visualization version GIF version |
Description: Conditions for which π΄ is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) Avoid ax-13 2363. (Revised by Gino Giotto, 19-May-2023.) |
Ref | Expression |
---|---|
issmo.1 | β’ π΄:π΅βΆOn |
issmo.2 | β’ Ord π΅ |
issmo.3 | β’ ((π₯ β π΅ β§ π¦ β π΅) β (π₯ β π¦ β (π΄βπ₯) β (π΄βπ¦))) |
issmo.4 | β’ dom π΄ = π΅ |
Ref | Expression |
---|---|
issmo | β’ Smo π΄ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmo.1 | . . 3 β’ π΄:π΅βΆOn | |
2 | issmo.4 | . . . 4 β’ dom π΄ = π΅ | |
3 | 2 | feq2i 6700 | . . 3 β’ (π΄:dom π΄βΆOn β π΄:π΅βΆOn) |
4 | 1, 3 | mpbir 230 | . 2 β’ π΄:dom π΄βΆOn |
5 | issmo.2 | . . 3 β’ Ord π΅ | |
6 | ordeq 6362 | . . . 4 β’ (dom π΄ = π΅ β (Ord dom π΄ β Ord π΅)) | |
7 | 2, 6 | ax-mp 5 | . . 3 β’ (Ord dom π΄ β Ord π΅) |
8 | 5, 7 | mpbir 230 | . 2 β’ Ord dom π΄ |
9 | 2 | eleq2i 2817 | . . . 4 β’ (π₯ β dom π΄ β π₯ β π΅) |
10 | 2 | eleq2i 2817 | . . . 4 β’ (π¦ β dom π΄ β π¦ β π΅) |
11 | issmo.3 | . . . 4 β’ ((π₯ β π΅ β§ π¦ β π΅) β (π₯ β π¦ β (π΄βπ₯) β (π΄βπ¦))) | |
12 | 9, 10, 11 | syl2anb 597 | . . 3 β’ ((π₯ β dom π΄ β§ π¦ β dom π΄) β (π₯ β π¦ β (π΄βπ₯) β (π΄βπ¦))) |
13 | 12 | rgen2 3189 | . 2 β’ βπ₯ β dom π΄βπ¦ β dom π΄(π₯ β π¦ β (π΄βπ₯) β (π΄βπ¦)) |
14 | df-smo 8342 | . 2 β’ (Smo π΄ β (π΄:dom π΄βΆOn β§ Ord dom π΄ β§ βπ₯ β dom π΄βπ¦ β dom π΄(π₯ β π¦ β (π΄βπ₯) β (π΄βπ¦)))) | |
15 | 4, 8, 13, 14 | mpbir3an 1338 | 1 β’ Smo π΄ |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 dom cdm 5667 Ord word 6354 Oncon0 6355 βΆwf 6530 βcfv 6534 Smo wsmo 8341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-v 3468 df-in 3948 df-ss 3958 df-uni 4901 df-tr 5257 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-ord 6358 df-fn 6537 df-f 6538 df-smo 8342 |
This theorem is referenced by: iordsmo 8353 smobeth 10578 |
Copyright terms: Public domain | W3C validator |