MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issmo Structured version   Visualization version   GIF version

Theorem issmo 8295
Description: Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) Avoid ax-13 2371. (Revised by Gino Giotto, 19-May-2023.)
Hypotheses
Ref Expression
issmo.1 𝐴:𝐡⟢On
issmo.2 Ord 𝐡
issmo.3 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦)))
issmo.4 dom 𝐴 = 𝐡
Assertion
Ref Expression
issmo Smo 𝐴
Distinct variable group:   π‘₯,𝑦,𝐴
Allowed substitution hints:   𝐡(π‘₯,𝑦)

Proof of Theorem issmo
StepHypRef Expression
1 issmo.1 . . 3 𝐴:𝐡⟢On
2 issmo.4 . . . 4 dom 𝐴 = 𝐡
32feq2i 6661 . . 3 (𝐴:dom 𝐴⟢On ↔ 𝐴:𝐡⟢On)
41, 3mpbir 230 . 2 𝐴:dom 𝐴⟢On
5 issmo.2 . . 3 Ord 𝐡
6 ordeq 6325 . . . 4 (dom 𝐴 = 𝐡 β†’ (Ord dom 𝐴 ↔ Ord 𝐡))
72, 6ax-mp 5 . . 3 (Ord dom 𝐴 ↔ Ord 𝐡)
85, 7mpbir 230 . 2 Ord dom 𝐴
92eleq2i 2826 . . . 4 (π‘₯ ∈ dom 𝐴 ↔ π‘₯ ∈ 𝐡)
102eleq2i 2826 . . . 4 (𝑦 ∈ dom 𝐴 ↔ 𝑦 ∈ 𝐡)
11 issmo.3 . . . 4 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦)))
129, 10, 11syl2anb 599 . . 3 ((π‘₯ ∈ dom 𝐴 ∧ 𝑦 ∈ dom 𝐴) β†’ (π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦)))
1312rgen2 3191 . 2 βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦))
14 df-smo 8293 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟢On ∧ Ord dom 𝐴 ∧ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦))))
154, 8, 13, 14mpbir3an 1342 1 Smo 𝐴
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  dom cdm 5634  Ord word 6317  Oncon0 6318  βŸΆwf 6493  β€˜cfv 6497  Smo wsmo 8292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-v 3446  df-in 3918  df-ss 3928  df-uni 4867  df-tr 5224  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-ord 6321  df-fn 6500  df-f 6501  df-smo 8293
This theorem is referenced by:  iordsmo  8304  smobeth  10527
  Copyright terms: Public domain W3C validator