Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  issmo Structured version   Visualization version   GIF version

Theorem issmo 7971
 Description: Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) Avoid ax-13 2379. (Revised by Gino Giotto, 19-May-2023.)
Hypotheses
Ref Expression
issmo.1 𝐴:𝐵⟶On
issmo.2 Ord 𝐵
issmo.3 ((𝑥𝐵𝑦𝐵) → (𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
issmo.4 dom 𝐴 = 𝐵
Assertion
Ref Expression
issmo Smo 𝐴
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem issmo
StepHypRef Expression
1 issmo.1 . . 3 𝐴:𝐵⟶On
2 issmo.4 . . . 4 dom 𝐴 = 𝐵
32feq2i 6480 . . 3 (𝐴:dom 𝐴⟶On ↔ 𝐴:𝐵⟶On)
41, 3mpbir 234 . 2 𝐴:dom 𝐴⟶On
5 issmo.2 . . 3 Ord 𝐵
6 ordeq 6167 . . . 4 (dom 𝐴 = 𝐵 → (Ord dom 𝐴 ↔ Ord 𝐵))
72, 6ax-mp 5 . . 3 (Ord dom 𝐴 ↔ Ord 𝐵)
85, 7mpbir 234 . 2 Ord dom 𝐴
92eleq2i 2881 . . . 4 (𝑥 ∈ dom 𝐴𝑥𝐵)
102eleq2i 2881 . . . 4 (𝑦 ∈ dom 𝐴𝑦𝐵)
11 issmo.3 . . . 4 ((𝑥𝐵𝑦𝐵) → (𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
129, 10, 11syl2anb 600 . . 3 ((𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴) → (𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
1312rgen2 3168 . 2 𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))
14 df-smo 7969 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
154, 8, 13, 14mpbir3an 1338 1 Smo 𝐴
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  dom cdm 5520  Ord word 6159  Oncon0 6160  ⟶wf 6321  ‘cfv 6325  Smo wsmo 7968 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ral 3111  df-v 3443  df-in 3888  df-ss 3898  df-uni 4802  df-tr 5138  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-ord 6163  df-fn 6328  df-f 6329  df-smo 7969 This theorem is referenced by:  iordsmo  7980  smobeth  10000
 Copyright terms: Public domain W3C validator