![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issmo | Structured version Visualization version GIF version |
Description: Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) Avoid ax-13 2372. (Revised by Gino Giotto, 19-May-2023.) |
Ref | Expression |
---|---|
issmo.1 | ⊢ 𝐴:𝐵⟶On |
issmo.2 | ⊢ Ord 𝐵 |
issmo.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
issmo.4 | ⊢ dom 𝐴 = 𝐵 |
Ref | Expression |
---|---|
issmo | ⊢ Smo 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmo.1 | . . 3 ⊢ 𝐴:𝐵⟶On | |
2 | issmo.4 | . . . 4 ⊢ dom 𝐴 = 𝐵 | |
3 | 2 | feq2i 6706 | . . 3 ⊢ (𝐴:dom 𝐴⟶On ↔ 𝐴:𝐵⟶On) |
4 | 1, 3 | mpbir 230 | . 2 ⊢ 𝐴:dom 𝐴⟶On |
5 | issmo.2 | . . 3 ⊢ Ord 𝐵 | |
6 | ordeq 6368 | . . . 4 ⊢ (dom 𝐴 = 𝐵 → (Ord dom 𝐴 ↔ Ord 𝐵)) | |
7 | 2, 6 | ax-mp 5 | . . 3 ⊢ (Ord dom 𝐴 ↔ Ord 𝐵) |
8 | 5, 7 | mpbir 230 | . 2 ⊢ Ord dom 𝐴 |
9 | 2 | eleq2i 2826 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ 𝑥 ∈ 𝐵) |
10 | 2 | eleq2i 2826 | . . . 4 ⊢ (𝑦 ∈ dom 𝐴 ↔ 𝑦 ∈ 𝐵) |
11 | issmo.3 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) | |
12 | 9, 10, 11 | syl2anb 599 | . . 3 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ dom 𝐴) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
13 | 12 | rgen2 3198 | . 2 ⊢ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) |
14 | df-smo 8341 | . 2 ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) | |
15 | 4, 8, 13, 14 | mpbir3an 1342 | 1 ⊢ Smo 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 dom cdm 5675 Ord word 6360 Oncon0 6361 ⟶wf 6536 ‘cfv 6540 Smo wsmo 8340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-v 3477 df-in 3954 df-ss 3964 df-uni 4908 df-tr 5265 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-fn 6543 df-f 6544 df-smo 8341 |
This theorem is referenced by: iordsmo 8352 smobeth 10577 |
Copyright terms: Public domain | W3C validator |