| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smodm | Structured version Visualization version GIF version | ||
| Description: The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| Ref | Expression |
|---|---|
| smodm | ⊢ (Smo 𝐴 → Ord dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-smo 8317 | . 2 ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (Smo 𝐴 → Ord dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3045 dom cdm 5640 Ord word 6333 Oncon0 6334 ⟶wf 6509 ‘cfv 6513 Smo wsmo 8316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-smo 8317 |
| This theorem is referenced by: smores2 8325 smodm2 8326 smoel 8331 |
| Copyright terms: Public domain | W3C validator |