Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smodm | Structured version Visualization version GIF version |
Description: The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.) |
Ref | Expression |
---|---|
smodm | ⊢ (Smo 𝐴 → Ord dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-smo 8177 | . 2 ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) | |
2 | 1 | simp2bi 1145 | 1 ⊢ (Smo 𝐴 → Ord dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3064 dom cdm 5589 Ord word 6265 Oncon0 6266 ⟶wf 6429 ‘cfv 6433 Smo wsmo 8176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-smo 8177 |
This theorem is referenced by: smores2 8185 smodm2 8186 smoel 8191 |
Copyright terms: Public domain | W3C validator |