MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smodm Structured version   Visualization version   GIF version

Theorem smodm 8298
Description: The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smodm (Smo 𝐴 β†’ Ord dom 𝐴)

Proof of Theorem smodm
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-smo 8293 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟢On ∧ Ord dom 𝐴 ∧ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦))))
21simp2bi 1147 1 (Smo 𝐴 β†’ Ord dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2107  βˆ€wral 3061  dom cdm 5634  Ord word 6317  Oncon0 6318  βŸΆwf 6493  β€˜cfv 6497  Smo wsmo 8292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-smo 8293
This theorem is referenced by:  smores2  8301  smodm2  8302  smoel  8307
  Copyright terms: Public domain W3C validator