Step | Hyp | Ref
| Expression |
1 | | funres 6476 |
. . . . . . . 8
⊢ (Fun
𝐴 → Fun (𝐴 ↾ 𝐵)) |
2 | | funfn 6464 |
. . . . . . . 8
⊢ (Fun
𝐴 ↔ 𝐴 Fn dom 𝐴) |
3 | | funfn 6464 |
. . . . . . . 8
⊢ (Fun
(𝐴 ↾ 𝐵) ↔ (𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵)) |
4 | 1, 2, 3 | 3imtr3i 291 |
. . . . . . 7
⊢ (𝐴 Fn dom 𝐴 → (𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵)) |
5 | | resss 5916 |
. . . . . . . . 9
⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
6 | 5 | rnssi 5849 |
. . . . . . . 8
⊢ ran
(𝐴 ↾ 𝐵) ⊆ ran 𝐴 |
7 | | sstr 3929 |
. . . . . . . 8
⊢ ((ran
(𝐴 ↾ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ⊆ On) → ran (𝐴 ↾ 𝐵) ⊆ On) |
8 | 6, 7 | mpan 687 |
. . . . . . 7
⊢ (ran
𝐴 ⊆ On → ran
(𝐴 ↾ 𝐵) ⊆ On) |
9 | 4, 8 | anim12i 613 |
. . . . . 6
⊢ ((𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ On) → ((𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵) ∧ ran (𝐴 ↾ 𝐵) ⊆ On)) |
10 | | df-f 6437 |
. . . . . 6
⊢ (𝐴:dom 𝐴⟶On ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ On)) |
11 | | df-f 6437 |
. . . . . 6
⊢ ((𝐴 ↾ 𝐵):dom (𝐴 ↾ 𝐵)⟶On ↔ ((𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵) ∧ ran (𝐴 ↾ 𝐵) ⊆ On)) |
12 | 9, 10, 11 | 3imtr4i 292 |
. . . . 5
⊢ (𝐴:dom 𝐴⟶On → (𝐴 ↾ 𝐵):dom (𝐴 ↾ 𝐵)⟶On) |
13 | 12 | a1i 11 |
. . . 4
⊢ (𝐵 ∈ dom 𝐴 → (𝐴:dom 𝐴⟶On → (𝐴 ↾ 𝐵):dom (𝐴 ↾ 𝐵)⟶On)) |
14 | | ordelord 6288 |
. . . . . . 7
⊢ ((Ord dom
𝐴 ∧ 𝐵 ∈ dom 𝐴) → Ord 𝐵) |
15 | 14 | expcom 414 |
. . . . . 6
⊢ (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord 𝐵)) |
16 | | ordin 6296 |
. . . . . . 7
⊢ ((Ord
𝐵 ∧ Ord dom 𝐴) → Ord (𝐵 ∩ dom 𝐴)) |
17 | 16 | ex 413 |
. . . . . 6
⊢ (Ord
𝐵 → (Ord dom 𝐴 → Ord (𝐵 ∩ dom 𝐴))) |
18 | 15, 17 | syli 39 |
. . . . 5
⊢ (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord (𝐵 ∩ dom 𝐴))) |
19 | | dmres 5913 |
. . . . . 6
⊢ dom
(𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
20 | | ordeq 6273 |
. . . . . 6
⊢ (dom
(𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) → (Ord dom (𝐴 ↾ 𝐵) ↔ Ord (𝐵 ∩ dom 𝐴))) |
21 | 19, 20 | ax-mp 5 |
. . . . 5
⊢ (Ord dom
(𝐴 ↾ 𝐵) ↔ Ord (𝐵 ∩ dom 𝐴)) |
22 | 18, 21 | syl6ibr 251 |
. . . 4
⊢ (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord dom (𝐴 ↾ 𝐵))) |
23 | | dmss 5811 |
. . . . . . . . 9
⊢ ((𝐴 ↾ 𝐵) ⊆ 𝐴 → dom (𝐴 ↾ 𝐵) ⊆ dom 𝐴) |
24 | 5, 23 | ax-mp 5 |
. . . . . . . 8
⊢ dom
(𝐴 ↾ 𝐵) ⊆ dom 𝐴 |
25 | | ssralv 3987 |
. . . . . . . 8
⊢ (dom
(𝐴 ↾ 𝐵) ⊆ dom 𝐴 → (∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) → ∀𝑥 ∈ dom (𝐴 ↾ 𝐵)∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) |
26 | 24, 25 | ax-mp 5 |
. . . . . . 7
⊢
(∀𝑥 ∈
dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) → ∀𝑥 ∈ dom (𝐴 ↾ 𝐵)∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
27 | | ssralv 3987 |
. . . . . . . . 9
⊢ (dom
(𝐴 ↾ 𝐵) ⊆ dom 𝐴 → (∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) → ∀𝑦 ∈ dom (𝐴 ↾ 𝐵)(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) |
28 | 24, 27 | ax-mp 5 |
. . . . . . . 8
⊢
(∀𝑦 ∈
dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) → ∀𝑦 ∈ dom (𝐴 ↾ 𝐵)(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
29 | 28 | ralimi 3087 |
. . . . . . 7
⊢
(∀𝑥 ∈
dom (𝐴 ↾ 𝐵)∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) → ∀𝑥 ∈ dom (𝐴 ↾ 𝐵)∀𝑦 ∈ dom (𝐴 ↾ 𝐵)(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
30 | 26, 29 | syl 17 |
. . . . . 6
⊢
(∀𝑥 ∈
dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) → ∀𝑥 ∈ dom (𝐴 ↾ 𝐵)∀𝑦 ∈ dom (𝐴 ↾ 𝐵)(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
31 | | inss1 4162 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∩ dom 𝐴) ⊆ 𝐵 |
32 | 19, 31 | eqsstri 3955 |
. . . . . . . . . . . 12
⊢ dom
(𝐴 ↾ 𝐵) ⊆ 𝐵 |
33 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ∧ 𝑦 ∈ dom (𝐴 ↾ 𝐵)) → 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
34 | 32, 33 | sselid 3919 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ∧ 𝑦 ∈ dom (𝐴 ↾ 𝐵)) → 𝑥 ∈ 𝐵) |
35 | 34 | fvresd 6794 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ∧ 𝑦 ∈ dom (𝐴 ↾ 𝐵)) → ((𝐴 ↾ 𝐵)‘𝑥) = (𝐴‘𝑥)) |
36 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ∧ 𝑦 ∈ dom (𝐴 ↾ 𝐵)) → 𝑦 ∈ dom (𝐴 ↾ 𝐵)) |
37 | 32, 36 | sselid 3919 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ∧ 𝑦 ∈ dom (𝐴 ↾ 𝐵)) → 𝑦 ∈ 𝐵) |
38 | 37 | fvresd 6794 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ∧ 𝑦 ∈ dom (𝐴 ↾ 𝐵)) → ((𝐴 ↾ 𝐵)‘𝑦) = (𝐴‘𝑦)) |
39 | 35, 38 | eleq12d 2833 |
. . . . . . . . 9
⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ∧ 𝑦 ∈ dom (𝐴 ↾ 𝐵)) → (((𝐴 ↾ 𝐵)‘𝑥) ∈ ((𝐴 ↾ 𝐵)‘𝑦) ↔ (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
40 | 39 | imbi2d 341 |
. . . . . . . 8
⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ∧ 𝑦 ∈ dom (𝐴 ↾ 𝐵)) → ((𝑥 ∈ 𝑦 → ((𝐴 ↾ 𝐵)‘𝑥) ∈ ((𝐴 ↾ 𝐵)‘𝑦)) ↔ (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) |
41 | 40 | ralbidva 3111 |
. . . . . . 7
⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) → (∀𝑦 ∈ dom (𝐴 ↾ 𝐵)(𝑥 ∈ 𝑦 → ((𝐴 ↾ 𝐵)‘𝑥) ∈ ((𝐴 ↾ 𝐵)‘𝑦)) ↔ ∀𝑦 ∈ dom (𝐴 ↾ 𝐵)(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) |
42 | 41 | ralbiia 3091 |
. . . . . 6
⊢
(∀𝑥 ∈
dom (𝐴 ↾ 𝐵)∀𝑦 ∈ dom (𝐴 ↾ 𝐵)(𝑥 ∈ 𝑦 → ((𝐴 ↾ 𝐵)‘𝑥) ∈ ((𝐴 ↾ 𝐵)‘𝑦)) ↔ ∀𝑥 ∈ dom (𝐴 ↾ 𝐵)∀𝑦 ∈ dom (𝐴 ↾ 𝐵)(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
43 | 30, 42 | sylibr 233 |
. . . . 5
⊢
(∀𝑥 ∈
dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) → ∀𝑥 ∈ dom (𝐴 ↾ 𝐵)∀𝑦 ∈ dom (𝐴 ↾ 𝐵)(𝑥 ∈ 𝑦 → ((𝐴 ↾ 𝐵)‘𝑥) ∈ ((𝐴 ↾ 𝐵)‘𝑦))) |
44 | 43 | a1i 11 |
. . . 4
⊢ (𝐵 ∈ dom 𝐴 → (∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) → ∀𝑥 ∈ dom (𝐴 ↾ 𝐵)∀𝑦 ∈ dom (𝐴 ↾ 𝐵)(𝑥 ∈ 𝑦 → ((𝐴 ↾ 𝐵)‘𝑥) ∈ ((𝐴 ↾ 𝐵)‘𝑦)))) |
45 | 13, 22, 44 | 3anim123d 1442 |
. . 3
⊢ (𝐵 ∈ dom 𝐴 → ((𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) → ((𝐴 ↾ 𝐵):dom (𝐴 ↾ 𝐵)⟶On ∧ Ord dom (𝐴 ↾ 𝐵) ∧ ∀𝑥 ∈ dom (𝐴 ↾ 𝐵)∀𝑦 ∈ dom (𝐴 ↾ 𝐵)(𝑥 ∈ 𝑦 → ((𝐴 ↾ 𝐵)‘𝑥) ∈ ((𝐴 ↾ 𝐵)‘𝑦))))) |
46 | | df-smo 8177 |
. . 3
⊢ (Smo
𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) |
47 | | df-smo 8177 |
. . 3
⊢ (Smo
(𝐴 ↾ 𝐵) ↔ ((𝐴 ↾ 𝐵):dom (𝐴 ↾ 𝐵)⟶On ∧ Ord dom (𝐴 ↾ 𝐵) ∧ ∀𝑥 ∈ dom (𝐴 ↾ 𝐵)∀𝑦 ∈ dom (𝐴 ↾ 𝐵)(𝑥 ∈ 𝑦 → ((𝐴 ↾ 𝐵)‘𝑥) ∈ ((𝐴 ↾ 𝐵)‘𝑦)))) |
48 | 45, 46, 47 | 3imtr4g 296 |
. 2
⊢ (𝐵 ∈ dom 𝐴 → (Smo 𝐴 → Smo (𝐴 ↾ 𝐵))) |
49 | 48 | impcom 408 |
1
⊢ ((Smo
𝐴 ∧ 𝐵 ∈ dom 𝐴) → Smo (𝐴 ↾ 𝐵)) |