MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smores Structured version   Visualization version   GIF version

Theorem smores 8267
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
smores ((Smo 𝐴𝐵 ∈ dom 𝐴) → Smo (𝐴𝐵))

Proof of Theorem smores
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funres 6518 . . . . . . . 8 (Fun 𝐴 → Fun (𝐴𝐵))
2 funfn 6506 . . . . . . . 8 (Fun 𝐴𝐴 Fn dom 𝐴)
3 funfn 6506 . . . . . . . 8 (Fun (𝐴𝐵) ↔ (𝐴𝐵) Fn dom (𝐴𝐵))
41, 2, 33imtr3i 291 . . . . . . 7 (𝐴 Fn dom 𝐴 → (𝐴𝐵) Fn dom (𝐴𝐵))
5 resss 5945 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
65rnssi 5875 . . . . . . . 8 ran (𝐴𝐵) ⊆ ran 𝐴
7 sstr 3938 . . . . . . . 8 ((ran (𝐴𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ⊆ On) → ran (𝐴𝐵) ⊆ On)
86, 7mpan 690 . . . . . . 7 (ran 𝐴 ⊆ On → ran (𝐴𝐵) ⊆ On)
94, 8anim12i 613 . . . . . 6 ((𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ On) → ((𝐴𝐵) Fn dom (𝐴𝐵) ∧ ran (𝐴𝐵) ⊆ On))
10 df-f 6480 . . . . . 6 (𝐴:dom 𝐴⟶On ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ On))
11 df-f 6480 . . . . . 6 ((𝐴𝐵):dom (𝐴𝐵)⟶On ↔ ((𝐴𝐵) Fn dom (𝐴𝐵) ∧ ran (𝐴𝐵) ⊆ On))
129, 10, 113imtr4i 292 . . . . 5 (𝐴:dom 𝐴⟶On → (𝐴𝐵):dom (𝐴𝐵)⟶On)
1312a1i 11 . . . 4 (𝐵 ∈ dom 𝐴 → (𝐴:dom 𝐴⟶On → (𝐴𝐵):dom (𝐴𝐵)⟶On))
14 ordelord 6323 . . . . . . 7 ((Ord dom 𝐴𝐵 ∈ dom 𝐴) → Ord 𝐵)
1514expcom 413 . . . . . 6 (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord 𝐵))
16 ordin 6331 . . . . . . 7 ((Ord 𝐵 ∧ Ord dom 𝐴) → Ord (𝐵 ∩ dom 𝐴))
1716ex 412 . . . . . 6 (Ord 𝐵 → (Ord dom 𝐴 → Ord (𝐵 ∩ dom 𝐴)))
1815, 17syli 39 . . . . 5 (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord (𝐵 ∩ dom 𝐴)))
19 dmres 5956 . . . . . 6 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
20 ordeq 6308 . . . . . 6 (dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴) → (Ord dom (𝐴𝐵) ↔ Ord (𝐵 ∩ dom 𝐴)))
2119, 20ax-mp 5 . . . . 5 (Ord dom (𝐴𝐵) ↔ Ord (𝐵 ∩ dom 𝐴))
2218, 21imbitrrdi 252 . . . 4 (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord dom (𝐴𝐵)))
23 dmss 5837 . . . . . . . . 9 ((𝐴𝐵) ⊆ 𝐴 → dom (𝐴𝐵) ⊆ dom 𝐴)
245, 23ax-mp 5 . . . . . . . 8 dom (𝐴𝐵) ⊆ dom 𝐴
25 ssralv 3998 . . . . . . . 8 (dom (𝐴𝐵) ⊆ dom 𝐴 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
2624, 25ax-mp 5 . . . . . . 7 (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
27 ssralv 3998 . . . . . . . . 9 (dom (𝐴𝐵) ⊆ dom 𝐴 → (∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
2824, 27ax-mp 5 . . . . . . . 8 (∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
2928ralimi 3069 . . . . . . 7 (∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
3026, 29syl 17 . . . . . 6 (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
31 inss1 4182 . . . . . . . . . . . . 13 (𝐵 ∩ dom 𝐴) ⊆ 𝐵
3219, 31eqsstri 3976 . . . . . . . . . . . 12 dom (𝐴𝐵) ⊆ 𝐵
33 simpl 482 . . . . . . . . . . . 12 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑥 ∈ dom (𝐴𝐵))
3432, 33sselid 3927 . . . . . . . . . . 11 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑥𝐵)
3534fvresd 6837 . . . . . . . . . 10 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → ((𝐴𝐵)‘𝑥) = (𝐴𝑥))
36 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑦 ∈ dom (𝐴𝐵))
3732, 36sselid 3927 . . . . . . . . . . 11 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑦𝐵)
3837fvresd 6837 . . . . . . . . . 10 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → ((𝐴𝐵)‘𝑦) = (𝐴𝑦))
3935, 38eleq12d 2825 . . . . . . . . 9 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → (((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦) ↔ (𝐴𝑥) ∈ (𝐴𝑦)))
4039imbi2d 340 . . . . . . . 8 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → ((𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)) ↔ (𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
4140ralbidva 3153 . . . . . . 7 (𝑥 ∈ dom (𝐴𝐵) → (∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)) ↔ ∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
4241ralbiia 3076 . . . . . 6 (∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)) ↔ ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
4330, 42sylibr 234 . . . . 5 (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)))
4443a1i 11 . . . 4 (𝐵 ∈ dom 𝐴 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦))))
4513, 22, 443anim123d 1445 . . 3 (𝐵 ∈ dom 𝐴 → ((𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))) → ((𝐴𝐵):dom (𝐴𝐵)⟶On ∧ Ord dom (𝐴𝐵) ∧ ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)))))
46 df-smo 8261 . . 3 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
47 df-smo 8261 . . 3 (Smo (𝐴𝐵) ↔ ((𝐴𝐵):dom (𝐴𝐵)⟶On ∧ Ord dom (𝐴𝐵) ∧ ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦))))
4845, 46, 473imtr4g 296 . 2 (𝐵 ∈ dom 𝐴 → (Smo 𝐴 → Smo (𝐴𝐵)))
4948impcom 407 1 ((Smo 𝐴𝐵 ∈ dom 𝐴) → Smo (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cin 3896  wss 3897  dom cdm 5611  ran crn 5612  cres 5613  Ord word 6300  Oncon0 6301  Fun wfun 6470   Fn wfn 6471  wf 6472  cfv 6476  Smo wsmo 8260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ord 6304  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-smo 8261
This theorem is referenced by:  smores3  8268  alephsing  10162
  Copyright terms: Public domain W3C validator