MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smores Structured version   Visualization version   GIF version

Theorem smores 8282
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
smores ((Smo 𝐴𝐵 ∈ dom 𝐴) → Smo (𝐴𝐵))

Proof of Theorem smores
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funres 6528 . . . . . . . 8 (Fun 𝐴 → Fun (𝐴𝐵))
2 funfn 6516 . . . . . . . 8 (Fun 𝐴𝐴 Fn dom 𝐴)
3 funfn 6516 . . . . . . . 8 (Fun (𝐴𝐵) ↔ (𝐴𝐵) Fn dom (𝐴𝐵))
41, 2, 33imtr3i 291 . . . . . . 7 (𝐴 Fn dom 𝐴 → (𝐴𝐵) Fn dom (𝐴𝐵))
5 resss 5956 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
65rnssi 5886 . . . . . . . 8 ran (𝐴𝐵) ⊆ ran 𝐴
7 sstr 3946 . . . . . . . 8 ((ran (𝐴𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ⊆ On) → ran (𝐴𝐵) ⊆ On)
86, 7mpan 690 . . . . . . 7 (ran 𝐴 ⊆ On → ran (𝐴𝐵) ⊆ On)
94, 8anim12i 613 . . . . . 6 ((𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ On) → ((𝐴𝐵) Fn dom (𝐴𝐵) ∧ ran (𝐴𝐵) ⊆ On))
10 df-f 6490 . . . . . 6 (𝐴:dom 𝐴⟶On ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ On))
11 df-f 6490 . . . . . 6 ((𝐴𝐵):dom (𝐴𝐵)⟶On ↔ ((𝐴𝐵) Fn dom (𝐴𝐵) ∧ ran (𝐴𝐵) ⊆ On))
129, 10, 113imtr4i 292 . . . . 5 (𝐴:dom 𝐴⟶On → (𝐴𝐵):dom (𝐴𝐵)⟶On)
1312a1i 11 . . . 4 (𝐵 ∈ dom 𝐴 → (𝐴:dom 𝐴⟶On → (𝐴𝐵):dom (𝐴𝐵)⟶On))
14 ordelord 6333 . . . . . . 7 ((Ord dom 𝐴𝐵 ∈ dom 𝐴) → Ord 𝐵)
1514expcom 413 . . . . . 6 (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord 𝐵))
16 ordin 6341 . . . . . . 7 ((Ord 𝐵 ∧ Ord dom 𝐴) → Ord (𝐵 ∩ dom 𝐴))
1716ex 412 . . . . . 6 (Ord 𝐵 → (Ord dom 𝐴 → Ord (𝐵 ∩ dom 𝐴)))
1815, 17syli 39 . . . . 5 (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord (𝐵 ∩ dom 𝐴)))
19 dmres 5967 . . . . . 6 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
20 ordeq 6318 . . . . . 6 (dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴) → (Ord dom (𝐴𝐵) ↔ Ord (𝐵 ∩ dom 𝐴)))
2119, 20ax-mp 5 . . . . 5 (Ord dom (𝐴𝐵) ↔ Ord (𝐵 ∩ dom 𝐴))
2218, 21imbitrrdi 252 . . . 4 (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord dom (𝐴𝐵)))
23 dmss 5849 . . . . . . . . 9 ((𝐴𝐵) ⊆ 𝐴 → dom (𝐴𝐵) ⊆ dom 𝐴)
245, 23ax-mp 5 . . . . . . . 8 dom (𝐴𝐵) ⊆ dom 𝐴
25 ssralv 4006 . . . . . . . 8 (dom (𝐴𝐵) ⊆ dom 𝐴 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
2624, 25ax-mp 5 . . . . . . 7 (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
27 ssralv 4006 . . . . . . . . 9 (dom (𝐴𝐵) ⊆ dom 𝐴 → (∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
2824, 27ax-mp 5 . . . . . . . 8 (∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
2928ralimi 3066 . . . . . . 7 (∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
3026, 29syl 17 . . . . . 6 (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
31 inss1 4190 . . . . . . . . . . . . 13 (𝐵 ∩ dom 𝐴) ⊆ 𝐵
3219, 31eqsstri 3984 . . . . . . . . . . . 12 dom (𝐴𝐵) ⊆ 𝐵
33 simpl 482 . . . . . . . . . . . 12 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑥 ∈ dom (𝐴𝐵))
3432, 33sselid 3935 . . . . . . . . . . 11 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑥𝐵)
3534fvresd 6846 . . . . . . . . . 10 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → ((𝐴𝐵)‘𝑥) = (𝐴𝑥))
36 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑦 ∈ dom (𝐴𝐵))
3732, 36sselid 3935 . . . . . . . . . . 11 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑦𝐵)
3837fvresd 6846 . . . . . . . . . 10 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → ((𝐴𝐵)‘𝑦) = (𝐴𝑦))
3935, 38eleq12d 2822 . . . . . . . . 9 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → (((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦) ↔ (𝐴𝑥) ∈ (𝐴𝑦)))
4039imbi2d 340 . . . . . . . 8 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → ((𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)) ↔ (𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
4140ralbidva 3150 . . . . . . 7 (𝑥 ∈ dom (𝐴𝐵) → (∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)) ↔ ∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
4241ralbiia 3073 . . . . . 6 (∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)) ↔ ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
4330, 42sylibr 234 . . . . 5 (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)))
4443a1i 11 . . . 4 (𝐵 ∈ dom 𝐴 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦))))
4513, 22, 443anim123d 1445 . . 3 (𝐵 ∈ dom 𝐴 → ((𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))) → ((𝐴𝐵):dom (𝐴𝐵)⟶On ∧ Ord dom (𝐴𝐵) ∧ ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)))))
46 df-smo 8276 . . 3 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
47 df-smo 8276 . . 3 (Smo (𝐴𝐵) ↔ ((𝐴𝐵):dom (𝐴𝐵)⟶On ∧ Ord dom (𝐴𝐵) ∧ ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦))))
4845, 46, 473imtr4g 296 . 2 (𝐵 ∈ dom 𝐴 → (Smo 𝐴 → Smo (𝐴𝐵)))
4948impcom 407 1 ((Smo 𝐴𝐵 ∈ dom 𝐴) → Smo (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cin 3904  wss 3905  dom cdm 5623  ran crn 5624  cres 5625  Ord word 6310  Oncon0 6311  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  Smo wsmo 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ord 6314  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-smo 8276
This theorem is referenced by:  smores3  8283  alephsing  10189
  Copyright terms: Public domain W3C validator