MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoel Structured version   Visualization version   GIF version

Theorem smoel 8191
Description: If 𝑥 is less than 𝑦 then a strictly monotone function's value will be strictly less at 𝑥 than at 𝑦. (Contributed by Andrew Salmon, 22-Nov-2011.)
Assertion
Ref Expression
smoel ((Smo 𝐵𝐴 ∈ dom 𝐵𝐶𝐴) → (𝐵𝐶) ∈ (𝐵𝐴))

Proof of Theorem smoel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smodm 8182 . . . . 5 (Smo 𝐵 → Ord dom 𝐵)
2 ordtr1 6309 . . . . . . 7 (Ord dom 𝐵 → ((𝐶𝐴𝐴 ∈ dom 𝐵) → 𝐶 ∈ dom 𝐵))
32ancomsd 466 . . . . . 6 (Ord dom 𝐵 → ((𝐴 ∈ dom 𝐵𝐶𝐴) → 𝐶 ∈ dom 𝐵))
43expdimp 453 . . . . 5 ((Ord dom 𝐵𝐴 ∈ dom 𝐵) → (𝐶𝐴𝐶 ∈ dom 𝐵))
51, 4sylan 580 . . . 4 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝐶𝐴𝐶 ∈ dom 𝐵))
6 df-smo 8177 . . . . . 6 (Smo 𝐵 ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
7 eleq1 2826 . . . . . . . . . . 11 (𝑥 = 𝐶 → (𝑥𝑦𝐶𝑦))
8 fveq2 6774 . . . . . . . . . . . 12 (𝑥 = 𝐶 → (𝐵𝑥) = (𝐵𝐶))
98eleq1d 2823 . . . . . . . . . . 11 (𝑥 = 𝐶 → ((𝐵𝑥) ∈ (𝐵𝑦) ↔ (𝐵𝐶) ∈ (𝐵𝑦)))
107, 9imbi12d 345 . . . . . . . . . 10 (𝑥 = 𝐶 → ((𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ (𝐶𝑦 → (𝐵𝐶) ∈ (𝐵𝑦))))
11 eleq2 2827 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝐶𝑦𝐶𝐴))
12 fveq2 6774 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝐵𝑦) = (𝐵𝐴))
1312eleq2d 2824 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝐵𝐶) ∈ (𝐵𝑦) ↔ (𝐵𝐶) ∈ (𝐵𝐴)))
1411, 13imbi12d 345 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝐶𝑦 → (𝐵𝐶) ∈ (𝐵𝑦)) ↔ (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
1510, 14rspc2v 3570 . . . . . . . . 9 ((𝐶 ∈ dom 𝐵𝐴 ∈ dom 𝐵) → (∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
1615ancoms 459 . . . . . . . 8 ((𝐴 ∈ dom 𝐵𝐶 ∈ dom 𝐵) → (∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
1716com12 32 . . . . . . 7 (∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) → ((𝐴 ∈ dom 𝐵𝐶 ∈ dom 𝐵) → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
18173ad2ant3 1134 . . . . . 6 ((𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))) → ((𝐴 ∈ dom 𝐵𝐶 ∈ dom 𝐵) → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
196, 18sylbi 216 . . . . 5 (Smo 𝐵 → ((𝐴 ∈ dom 𝐵𝐶 ∈ dom 𝐵) → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
2019expdimp 453 . . . 4 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝐶 ∈ dom 𝐵 → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
215, 20syld 47 . . 3 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝐶𝐴 → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
2221pm2.43d 53 . 2 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴)))
23223impia 1116 1 ((Smo 𝐵𝐴 ∈ dom 𝐵𝐶𝐴) → (𝐵𝐶) ∈ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  dom cdm 5589  Ord word 6265  Oncon0 6266  wf 6429  cfv 6433  Smo wsmo 8176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-tr 5192  df-ord 6269  df-iota 6391  df-fv 6441  df-smo 8177
This theorem is referenced by:  smoiun  8192  smoel2  8194
  Copyright terms: Public domain W3C validator