MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoeq Structured version   Visualization version   GIF version

Theorem smoeq 8181
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smoeq (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵))

Proof of Theorem smoeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
2 dmeq 5812 . . . 4 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
31, 2feq12d 6588 . . 3 (𝐴 = 𝐵 → (𝐴:dom 𝐴⟶On ↔ 𝐵:dom 𝐵⟶On))
4 ordeq 6273 . . . 4 (dom 𝐴 = dom 𝐵 → (Ord dom 𝐴 ↔ Ord dom 𝐵))
52, 4syl 17 . . 3 (𝐴 = 𝐵 → (Ord dom 𝐴 ↔ Ord dom 𝐵))
6 fveq1 6773 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝑥) = (𝐵𝑥))
7 fveq1 6773 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝑦) = (𝐵𝑦))
86, 7eleq12d 2833 . . . . . 6 (𝐴 = 𝐵 → ((𝐴𝑥) ∈ (𝐴𝑦) ↔ (𝐵𝑥) ∈ (𝐵𝑦)))
98imbi2d 341 . . . . 5 (𝐴 = 𝐵 → ((𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ (𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1092ralbidv 3129 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
112raleqdv 3348 . . . . 5 (𝐴 = 𝐵 → (∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1211ralbidv 3112 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
132raleqdv 3348 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1410, 12, 133bitrd 305 . . 3 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
153, 5, 143anbi123d 1435 . 2 (𝐴 = 𝐵 → ((𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))) ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)))))
16 df-smo 8177 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
17 df-smo 8177 . 2 (Smo 𝐵 ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1815, 16, 173bitr4g 314 1 (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wral 3064  dom cdm 5589  Ord word 6265  Oncon0 6266  wf 6429  cfv 6433  Smo wsmo 8176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-ord 6269  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-smo 8177
This theorem is referenced by:  smores3  8184  smo0  8189  cofsmo  10025  cfsmolem  10026  alephsing  10032
  Copyright terms: Public domain W3C validator