MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoeq Structured version   Visualization version   GIF version

Theorem smoeq 7686
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smoeq (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵))

Proof of Theorem smoeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
2 dmeq 5527 . . . 4 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
31, 2feq12d 6244 . . 3 (𝐴 = 𝐵 → (𝐴:dom 𝐴⟶On ↔ 𝐵:dom 𝐵⟶On))
4 ordeq 5948 . . . 4 (dom 𝐴 = dom 𝐵 → (Ord dom 𝐴 ↔ Ord dom 𝐵))
52, 4syl 17 . . 3 (𝐴 = 𝐵 → (Ord dom 𝐴 ↔ Ord dom 𝐵))
6 fveq1 6410 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝑥) = (𝐵𝑥))
7 fveq1 6410 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝑦) = (𝐵𝑦))
86, 7eleq12d 2872 . . . . . 6 (𝐴 = 𝐵 → ((𝐴𝑥) ∈ (𝐴𝑦) ↔ (𝐵𝑥) ∈ (𝐵𝑦)))
98imbi2d 332 . . . . 5 (𝐴 = 𝐵 → ((𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ (𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1092ralbidv 3170 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
112raleqdv 3327 . . . . 5 (𝐴 = 𝐵 → (∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1211ralbidv 3167 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
132raleqdv 3327 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1410, 12, 133bitrd 297 . . 3 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
153, 5, 143anbi123d 1561 . 2 (𝐴 = 𝐵 → ((𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))) ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)))))
16 df-smo 7682 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
17 df-smo 7682 . 2 (Smo 𝐵 ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1815, 16, 173bitr4g 306 1 (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1108   = wceq 1653  wcel 2157  wral 3089  dom cdm 5312  Ord word 5940  Oncon0 5941  wf 6097  cfv 6101  Smo wsmo 7681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-tr 4946  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-ord 5944  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-fv 6109  df-smo 7682
This theorem is referenced by:  smores3  7689  smo0  7694  cofsmo  9379  cfsmolem  9380  alephsing  9386
  Copyright terms: Public domain W3C validator