MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoeq Structured version   Visualization version   GIF version

Theorem smoeq 8391
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smoeq (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵))

Proof of Theorem smoeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
2 dmeq 5913 . . . 4 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
31, 2feq12d 6723 . . 3 (𝐴 = 𝐵 → (𝐴:dom 𝐴⟶On ↔ 𝐵:dom 𝐵⟶On))
4 ordeq 6390 . . . 4 (dom 𝐴 = dom 𝐵 → (Ord dom 𝐴 ↔ Ord dom 𝐵))
52, 4syl 17 . . 3 (𝐴 = 𝐵 → (Ord dom 𝐴 ↔ Ord dom 𝐵))
6 fveq1 6904 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝑥) = (𝐵𝑥))
7 fveq1 6904 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝑦) = (𝐵𝑦))
86, 7eleq12d 2834 . . . . . 6 (𝐴 = 𝐵 → ((𝐴𝑥) ∈ (𝐴𝑦) ↔ (𝐵𝑥) ∈ (𝐵𝑦)))
98imbi2d 340 . . . . 5 (𝐴 = 𝐵 → ((𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ (𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1092ralbidv 3220 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
112raleqdv 3325 . . . . 5 (𝐴 = 𝐵 → (∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1211ralbidv 3177 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
132raleqdv 3325 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1410, 12, 133bitrd 305 . . 3 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
153, 5, 143anbi123d 1437 . 2 (𝐴 = 𝐵 → ((𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))) ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)))))
16 df-smo 8387 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
17 df-smo 8387 . 2 (Smo 𝐵 ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1815, 16, 173bitr4g 314 1 (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1539  wcel 2107  wral 3060  dom cdm 5684  Ord word 6382  Oncon0 6383  wf 6556  cfv 6560  Smo wsmo 8386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-tr 5259  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-ord 6386  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-smo 8387
This theorem is referenced by:  smores3  8394  smo0  8399  cofsmo  10310  cfsmolem  10311  alephsing  10317
  Copyright terms: Public domain W3C validator