MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoeq Structured version   Visualization version   GIF version

Theorem smoeq 8346
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smoeq (𝐴 = 𝐡 β†’ (Smo 𝐴 ↔ Smo 𝐡))

Proof of Theorem smoeq
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴 = 𝐡 β†’ 𝐴 = 𝐡)
2 dmeq 5901 . . . 4 (𝐴 = 𝐡 β†’ dom 𝐴 = dom 𝐡)
31, 2feq12d 6702 . . 3 (𝐴 = 𝐡 β†’ (𝐴:dom 𝐴⟢On ↔ 𝐡:dom 𝐡⟢On))
4 ordeq 6368 . . . 4 (dom 𝐴 = dom 𝐡 β†’ (Ord dom 𝐴 ↔ Ord dom 𝐡))
52, 4syl 17 . . 3 (𝐴 = 𝐡 β†’ (Ord dom 𝐴 ↔ Ord dom 𝐡))
6 fveq1 6887 . . . . . . 7 (𝐴 = 𝐡 β†’ (π΄β€˜π‘₯) = (π΅β€˜π‘₯))
7 fveq1 6887 . . . . . . 7 (𝐴 = 𝐡 β†’ (π΄β€˜π‘¦) = (π΅β€˜π‘¦))
86, 7eleq12d 2827 . . . . . 6 (𝐴 = 𝐡 β†’ ((π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦) ↔ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)))
98imbi2d 340 . . . . 5 (𝐴 = 𝐡 β†’ ((π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦)) ↔ (π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
1092ralbidv 3218 . . . 4 (𝐴 = 𝐡 β†’ (βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
112raleqdv 3325 . . . . 5 (𝐴 = 𝐡 β†’ (βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)) ↔ βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
1211ralbidv 3177 . . . 4 (𝐴 = 𝐡 β†’ (βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
132raleqdv 3325 . . . 4 (𝐴 = 𝐡 β†’ (βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ dom π΅βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
1410, 12, 133bitrd 304 . . 3 (𝐴 = 𝐡 β†’ (βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ dom π΅βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
153, 5, 143anbi123d 1436 . 2 (𝐴 = 𝐡 β†’ ((𝐴:dom 𝐴⟢On ∧ Ord dom 𝐴 ∧ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦))) ↔ (𝐡:dom 𝐡⟢On ∧ Ord dom 𝐡 ∧ βˆ€π‘₯ ∈ dom π΅βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)))))
16 df-smo 8342 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟢On ∧ Ord dom 𝐴 ∧ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦))))
17 df-smo 8342 . 2 (Smo 𝐡 ↔ (𝐡:dom 𝐡⟢On ∧ Ord dom 𝐡 ∧ βˆ€π‘₯ ∈ dom π΅βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
1815, 16, 173bitr4g 313 1 (𝐴 = 𝐡 β†’ (Smo 𝐴 ↔ Smo 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  dom cdm 5675  Ord word 6360  Oncon0 6361  βŸΆwf 6536  β€˜cfv 6540  Smo wsmo 8341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-ord 6364  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-smo 8342
This theorem is referenced by:  smores3  8349  smo0  8354  cofsmo  10260  cfsmolem  10261  alephsing  10267
  Copyright terms: Public domain W3C validator