![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smofvon | Structured version Visualization version GIF version |
Description: If 𝐵 is a strictly monotone ordinal function, and 𝐴 is in the domain of 𝐵, then the value of the function at 𝐴 is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.) |
Ref | Expression |
---|---|
smofvon | ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-smo 7726 | . . 3 ⊢ (Smo 𝐵 ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵∀𝑦 ∈ dom 𝐵(𝑥 ∈ 𝑦 → (𝐵‘𝑥) ∈ (𝐵‘𝑦)))) | |
2 | 1 | simp1bi 1136 | . 2 ⊢ (Smo 𝐵 → 𝐵:dom 𝐵⟶On) |
3 | 2 | ffvelrnda 6623 | 1 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2107 ∀wral 3090 dom cdm 5355 Ord word 5975 Oncon0 5976 ⟶wf 6131 ‘cfv 6135 Smo wsmo 7725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-smo 7726 |
This theorem is referenced by: smoiun 7741 |
Copyright terms: Public domain | W3C validator |