| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-xrn | Structured version Visualization version GIF version | ||
| Description: Define the range Cartesian product of two classes. Definition from [Holmes] p. 40. Membership in this class is characterized by xrnss3v 38314 and brxrn 38316. This is Scott Fenton's df-txp 35796 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35796. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| df-xrn | ⊢ (𝐴 ⋉ 𝐵) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cxrn 38122 | . 2 class (𝐴 ⋉ 𝐵) |
| 4 | c1st 7995 | . . . . . 6 class 1st | |
| 5 | cvv 3464 | . . . . . . 7 class V | |
| 6 | 5, 5 | cxp 5665 | . . . . . 6 class (V × V) |
| 7 | 4, 6 | cres 5669 | . . . . 5 class (1st ↾ (V × V)) |
| 8 | 7 | ccnv 5666 | . . . 4 class ◡(1st ↾ (V × V)) |
| 9 | 8, 1 | ccom 5671 | . . 3 class (◡(1st ↾ (V × V)) ∘ 𝐴) |
| 10 | c2nd 7996 | . . . . . 6 class 2nd | |
| 11 | 10, 6 | cres 5669 | . . . . 5 class (2nd ↾ (V × V)) |
| 12 | 11 | ccnv 5666 | . . . 4 class ◡(2nd ↾ (V × V)) |
| 13 | 12, 2 | ccom 5671 | . . 3 class (◡(2nd ↾ (V × V)) ∘ 𝐵) |
| 14 | 9, 13 | cin 3932 | . 2 class ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) |
| 15 | 3, 14 | wceq 1539 | 1 wff (𝐴 ⋉ 𝐵) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: xrnss3v 38314 brxrn 38316 xrneq1 38319 xrneq2 38322 xrnres 38344 xrnres2 38345 xrnres3 38346 |
| Copyright terms: Public domain | W3C validator |