Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnss3v | Structured version Visualization version GIF version |
Description: A range Cartesian product is a subset of the class of ordered triples. This is Scott Fenton's txpss3v 34107 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 34107. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
xrnss3v | ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xrn 36428 | . 2 ⊢ (𝐴 ⋉ 𝐵) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) | |
2 | inss1 4159 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) ⊆ (◡(1st ↾ (V × V)) ∘ 𝐴) | |
3 | relco 6137 | . . . 4 ⊢ Rel (◡(1st ↾ (V × V)) ∘ 𝐴) | |
4 | vex 3426 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
5 | vex 3426 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | brcnv 5780 | . . . . . . . 8 ⊢ (𝑧◡(1st ↾ (V × V))𝑦 ↔ 𝑦(1st ↾ (V × V))𝑧) |
7 | 4 | brresi 5889 | . . . . . . . . 9 ⊢ (𝑦(1st ↾ (V × V))𝑧 ↔ (𝑦 ∈ (V × V) ∧ 𝑦1st 𝑧)) |
8 | 7 | simplbi 497 | . . . . . . . 8 ⊢ (𝑦(1st ↾ (V × V))𝑧 → 𝑦 ∈ (V × V)) |
9 | 6, 8 | sylbi 216 | . . . . . . 7 ⊢ (𝑧◡(1st ↾ (V × V))𝑦 → 𝑦 ∈ (V × V)) |
10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V)) |
11 | 10 | exlimiv 1934 | . . . . 5 ⊢ (∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V)) |
12 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
13 | 12, 5 | opelco 5769 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (◡(1st ↾ (V × V)) ∘ 𝐴) ↔ ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦)) |
14 | opelxp 5616 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (V × (V × V)) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ (V × V))) | |
15 | 12, 14 | mpbiran 705 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (V × (V × V)) ↔ 𝑦 ∈ (V × V)) |
16 | 11, 13, 15 | 3imtr4i 291 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (◡(1st ↾ (V × V)) ∘ 𝐴) → 〈𝑥, 𝑦〉 ∈ (V × (V × V))) |
17 | 3, 16 | relssi 5686 | . . 3 ⊢ (◡(1st ↾ (V × V)) ∘ 𝐴) ⊆ (V × (V × V)) |
18 | 2, 17 | sstri 3926 | . 2 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) ⊆ (V × (V × V)) |
19 | 1, 18 | eqsstri 3951 | 1 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 〈cop 4564 class class class wbr 5070 × cxp 5578 ◡ccnv 5579 ↾ cres 5582 ∘ ccom 5584 1st c1st 7802 2nd c2nd 7803 ⋉ cxrn 36259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-res 5592 df-xrn 36428 |
This theorem is referenced by: xrnrel 36430 brxrn2 36432 |
Copyright terms: Public domain | W3C validator |