Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnss3v Structured version   Visualization version   GIF version

Theorem xrnss3v 35102
Description: A range Cartesian product is a subset of the class of ordered triples. This is Scott Fenton's txpss3v 32893 with a different symbol, see https://github.com/metamath/set.mm/issues/2469. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnss3v (𝐴𝐵) ⊆ (V × (V × V))

Proof of Theorem xrnss3v
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xrn 35101 . 2 (𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
2 inss1 4087 . . 3 (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵)) ⊆ ((1st ↾ (V × V)) ∘ 𝐴)
3 relco 5934 . . . 4 Rel ((1st ↾ (V × V)) ∘ 𝐴)
4 vex 3413 . . . . . . . . 9 𝑧 ∈ V
5 vex 3413 . . . . . . . . 9 𝑦 ∈ V
64, 5brcnv 5600 . . . . . . . 8 (𝑧(1st ↾ (V × V))𝑦𝑦(1st ↾ (V × V))𝑧)
74brresi 5702 . . . . . . . . 9 (𝑦(1st ↾ (V × V))𝑧 ↔ (𝑦 ∈ (V × V) ∧ 𝑦1st 𝑧))
87simplbi 490 . . . . . . . 8 (𝑦(1st ↾ (V × V))𝑧𝑦 ∈ (V × V))
96, 8sylbi 209 . . . . . . 7 (𝑧(1st ↾ (V × V))𝑦𝑦 ∈ (V × V))
109adantl 474 . . . . . 6 ((𝑥𝐴𝑧𝑧(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V))
1110exlimiv 1890 . . . . 5 (∃𝑧(𝑥𝐴𝑧𝑧(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V))
12 vex 3413 . . . . . 6 𝑥 ∈ V
1312, 5opelco 5589 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ((1st ↾ (V × V)) ∘ 𝐴) ↔ ∃𝑧(𝑥𝐴𝑧𝑧(1st ↾ (V × V))𝑦))
14 opelxp 5440 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (V × (V × V)) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ (V × V)))
1512, 14mpbiran 697 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (V × (V × V)) ↔ 𝑦 ∈ (V × V))
1611, 13, 153imtr4i 284 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((1st ↾ (V × V)) ∘ 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (V × (V × V)))
173, 16relssi 5507 . . 3 ((1st ↾ (V × V)) ∘ 𝐴) ⊆ (V × (V × V))
182, 17sstri 3862 . 2 (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵)) ⊆ (V × (V × V))
191, 18eqsstri 3886 1 (𝐴𝐵) ⊆ (V × (V × V))
Colors of variables: wff setvar class
Syntax hints:  wa 387  wex 1743  wcel 2051  Vcvv 3410  cin 3823  wss 3824  cop 4442   class class class wbr 4926   × cxp 5402  ccnv 5403  cres 5406  ccom 5408  1st c1st 7498  2nd c2nd 7499  cxrn 34929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pr 5183
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ral 3088  df-rex 3089  df-rab 3092  df-v 3412  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-sn 4437  df-pr 4439  df-op 4443  df-br 4927  df-opab 4989  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-res 5416  df-xrn 35101
This theorem is referenced by:  xrnrel  35103  brxrn2  35105
  Copyright terms: Public domain W3C validator