Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnss3v Structured version   Visualization version   GIF version

Theorem xrnss3v 38406
Description: A range Cartesian product is a subset of the class of ordered triples. This is Scott Fenton's txpss3v 35918 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35918. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnss3v (𝐴𝐵) ⊆ (V × (V × V))

Proof of Theorem xrnss3v
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xrn 38405 . 2 (𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
2 inss1 4187 . . 3 (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵)) ⊆ ((1st ↾ (V × V)) ∘ 𝐴)
3 relco 6057 . . . 4 Rel ((1st ↾ (V × V)) ∘ 𝐴)
4 vex 3440 . . . . . . . . 9 𝑧 ∈ V
5 vex 3440 . . . . . . . . 9 𝑦 ∈ V
64, 5brcnv 5822 . . . . . . . 8 (𝑧(1st ↾ (V × V))𝑦𝑦(1st ↾ (V × V))𝑧)
74brresi 5937 . . . . . . . . 9 (𝑦(1st ↾ (V × V))𝑧 ↔ (𝑦 ∈ (V × V) ∧ 𝑦1st 𝑧))
87simplbi 497 . . . . . . . 8 (𝑦(1st ↾ (V × V))𝑧𝑦 ∈ (V × V))
96, 8sylbi 217 . . . . . . 7 (𝑧(1st ↾ (V × V))𝑦𝑦 ∈ (V × V))
109adantl 481 . . . . . 6 ((𝑥𝐴𝑧𝑧(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V))
1110exlimiv 1931 . . . . 5 (∃𝑧(𝑥𝐴𝑧𝑧(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V))
12 vex 3440 . . . . . 6 𝑥 ∈ V
1312, 5opelco 5811 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ((1st ↾ (V × V)) ∘ 𝐴) ↔ ∃𝑧(𝑥𝐴𝑧𝑧(1st ↾ (V × V))𝑦))
14 opelxp 5652 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (V × (V × V)) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ (V × V)))
1512, 14mpbiran 709 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (V × (V × V)) ↔ 𝑦 ∈ (V × V))
1611, 13, 153imtr4i 292 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((1st ↾ (V × V)) ∘ 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (V × (V × V)))
173, 16relssi 5727 . . 3 ((1st ↾ (V × V)) ∘ 𝐴) ⊆ (V × (V × V))
182, 17sstri 3944 . 2 (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵)) ⊆ (V × (V × V))
191, 18eqsstri 3981 1 (𝐴𝐵) ⊆ (V × (V × V))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1780  wcel 2111  Vcvv 3436  cin 3901  wss 3902  cop 4582   class class class wbr 5091   × cxp 5614  ccnv 5615  cres 5618  ccom 5620  1st c1st 7919  2nd c2nd 7920  cxrn 38220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-res 5628  df-xrn 38405
This theorem is referenced by:  xrnrel  38407  brxrn2  38409
  Copyright terms: Public domain W3C validator