![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnss3v | Structured version Visualization version GIF version |
Description: A range Cartesian product is a subset of the class of ordered triples. This is Scott Fenton's txpss3v 32893 with a different symbol, see https://github.com/metamath/set.mm/issues/2469. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
xrnss3v | ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xrn 35101 | . 2 ⊢ (𝐴 ⋉ 𝐵) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) | |
2 | inss1 4087 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) ⊆ (◡(1st ↾ (V × V)) ∘ 𝐴) | |
3 | relco 5934 | . . . 4 ⊢ Rel (◡(1st ↾ (V × V)) ∘ 𝐴) | |
4 | vex 3413 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
5 | vex 3413 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | brcnv 5600 | . . . . . . . 8 ⊢ (𝑧◡(1st ↾ (V × V))𝑦 ↔ 𝑦(1st ↾ (V × V))𝑧) |
7 | 4 | brresi 5702 | . . . . . . . . 9 ⊢ (𝑦(1st ↾ (V × V))𝑧 ↔ (𝑦 ∈ (V × V) ∧ 𝑦1st 𝑧)) |
8 | 7 | simplbi 490 | . . . . . . . 8 ⊢ (𝑦(1st ↾ (V × V))𝑧 → 𝑦 ∈ (V × V)) |
9 | 6, 8 | sylbi 209 | . . . . . . 7 ⊢ (𝑧◡(1st ↾ (V × V))𝑦 → 𝑦 ∈ (V × V)) |
10 | 9 | adantl 474 | . . . . . 6 ⊢ ((𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V)) |
11 | 10 | exlimiv 1890 | . . . . 5 ⊢ (∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V)) |
12 | vex 3413 | . . . . . 6 ⊢ 𝑥 ∈ V | |
13 | 12, 5 | opelco 5589 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (◡(1st ↾ (V × V)) ∘ 𝐴) ↔ ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦)) |
14 | opelxp 5440 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (V × (V × V)) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ (V × V))) | |
15 | 12, 14 | mpbiran 697 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (V × (V × V)) ↔ 𝑦 ∈ (V × V)) |
16 | 11, 13, 15 | 3imtr4i 284 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (◡(1st ↾ (V × V)) ∘ 𝐴) → 〈𝑥, 𝑦〉 ∈ (V × (V × V))) |
17 | 3, 16 | relssi 5507 | . . 3 ⊢ (◡(1st ↾ (V × V)) ∘ 𝐴) ⊆ (V × (V × V)) |
18 | 2, 17 | sstri 3862 | . 2 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) ⊆ (V × (V × V)) |
19 | 1, 18 | eqsstri 3886 | 1 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 ∃wex 1743 ∈ wcel 2051 Vcvv 3410 ∩ cin 3823 ⊆ wss 3824 〈cop 4442 class class class wbr 4926 × cxp 5402 ◡ccnv 5403 ↾ cres 5406 ∘ ccom 5408 1st c1st 7498 2nd c2nd 7499 ⋉ cxrn 34929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-op 4443 df-br 4927 df-opab 4989 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-res 5416 df-xrn 35101 |
This theorem is referenced by: xrnrel 35103 brxrn2 35105 |
Copyright terms: Public domain | W3C validator |