Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnss3v Structured version   Visualization version   GIF version

Theorem xrnss3v 36502
Description: A range Cartesian product is a subset of the class of ordered triples. This is Scott Fenton's txpss3v 34180 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 34180. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnss3v (𝐴𝐵) ⊆ (V × (V × V))

Proof of Theorem xrnss3v
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xrn 36501 . 2 (𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
2 inss1 4162 . . 3 (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵)) ⊆ ((1st ↾ (V × V)) ∘ 𝐴)
3 relco 6148 . . . 4 Rel ((1st ↾ (V × V)) ∘ 𝐴)
4 vex 3436 . . . . . . . . 9 𝑧 ∈ V
5 vex 3436 . . . . . . . . 9 𝑦 ∈ V
64, 5brcnv 5791 . . . . . . . 8 (𝑧(1st ↾ (V × V))𝑦𝑦(1st ↾ (V × V))𝑧)
74brresi 5900 . . . . . . . . 9 (𝑦(1st ↾ (V × V))𝑧 ↔ (𝑦 ∈ (V × V) ∧ 𝑦1st 𝑧))
87simplbi 498 . . . . . . . 8 (𝑦(1st ↾ (V × V))𝑧𝑦 ∈ (V × V))
96, 8sylbi 216 . . . . . . 7 (𝑧(1st ↾ (V × V))𝑦𝑦 ∈ (V × V))
109adantl 482 . . . . . 6 ((𝑥𝐴𝑧𝑧(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V))
1110exlimiv 1933 . . . . 5 (∃𝑧(𝑥𝐴𝑧𝑧(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V))
12 vex 3436 . . . . . 6 𝑥 ∈ V
1312, 5opelco 5780 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ((1st ↾ (V × V)) ∘ 𝐴) ↔ ∃𝑧(𝑥𝐴𝑧𝑧(1st ↾ (V × V))𝑦))
14 opelxp 5625 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (V × (V × V)) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ (V × V)))
1512, 14mpbiran 706 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (V × (V × V)) ↔ 𝑦 ∈ (V × V))
1611, 13, 153imtr4i 292 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((1st ↾ (V × V)) ∘ 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (V × (V × V)))
173, 16relssi 5697 . . 3 ((1st ↾ (V × V)) ∘ 𝐴) ⊆ (V × (V × V))
182, 17sstri 3930 . 2 (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵)) ⊆ (V × (V × V))
191, 18eqsstri 3955 1 (𝐴𝐵) ⊆ (V × (V × V))
Colors of variables: wff setvar class
Syntax hints:  wa 396  wex 1782  wcel 2106  Vcvv 3432  cin 3886  wss 3887  cop 4567   class class class wbr 5074   × cxp 5587  ccnv 5588  cres 5591  ccom 5593  1st c1st 7829  2nd c2nd 7830  cxrn 36332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-res 5601  df-xrn 36501
This theorem is referenced by:  xrnrel  36503  brxrn2  36505
  Copyright terms: Public domain W3C validator