Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq1 Structured version   Visualization version   GIF version

Theorem xrneq1 36486
Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.)
Assertion
Ref Expression
xrneq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem xrneq1
StepHypRef Expression
1 coeq2 5764 . . 3 (𝐴 = 𝐵 → ((1st ↾ (V × V)) ∘ 𝐴) = ((1st ↾ (V × V)) ∘ 𝐵))
21ineq1d 4150 . 2 (𝐴 = 𝐵 → (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐶)) = (((1st ↾ (V × V)) ∘ 𝐵) ∩ ((2nd ↾ (V × V)) ∘ 𝐶)))
3 df-xrn 36480 . 2 (𝐴𝐶) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐶))
4 df-xrn 36480 . 2 (𝐵𝐶) = (((1st ↾ (V × V)) ∘ 𝐵) ∩ ((2nd ↾ (V × V)) ∘ 𝐶))
52, 3, 43eqtr4g 2804 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  Vcvv 3430  cin 3890   × cxp 5586  ccnv 5587  cres 5590  ccom 5592  1st c1st 7815  2nd c2nd 7816  cxrn 36311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-in 3898  df-ss 3908  df-br 5079  df-opab 5141  df-co 5597  df-xrn 36480
This theorem is referenced by:  xrneq1i  36487  xrneq1d  36488  xrneq12  36492
  Copyright terms: Public domain W3C validator