Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
Ref | Expression |
---|---|
xrneq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq2 5764 | . . 3 ⊢ (𝐴 = 𝐵 → (◡(1st ↾ (V × V)) ∘ 𝐴) = (◡(1st ↾ (V × V)) ∘ 𝐵)) | |
2 | 1 | ineq1d 4150 | . 2 ⊢ (𝐴 = 𝐵 → ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐶)) = ((◡(1st ↾ (V × V)) ∘ 𝐵) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐶))) |
3 | df-xrn 36480 | . 2 ⊢ (𝐴 ⋉ 𝐶) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐶)) | |
4 | df-xrn 36480 | . 2 ⊢ (𝐵 ⋉ 𝐶) = ((◡(1st ↾ (V × V)) ∘ 𝐵) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐶)) | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 Vcvv 3430 ∩ cin 3890 × cxp 5586 ◡ccnv 5587 ↾ cres 5590 ∘ ccom 5592 1st c1st 7815 2nd c2nd 7816 ⋉ cxrn 36311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-in 3898 df-ss 3908 df-br 5079 df-opab 5141 df-co 5597 df-xrn 36480 |
This theorem is referenced by: xrneq1i 36487 xrneq1d 36488 xrneq12 36492 |
Copyright terms: Public domain | W3C validator |