Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq1 Structured version   Visualization version   GIF version

Theorem xrneq1 38395
Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.)
Assertion
Ref Expression
xrneq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem xrneq1
StepHypRef Expression
1 coeq2 5838 . . 3 (𝐴 = 𝐵 → ((1st ↾ (V × V)) ∘ 𝐴) = ((1st ↾ (V × V)) ∘ 𝐵))
21ineq1d 4194 . 2 (𝐴 = 𝐵 → (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐶)) = (((1st ↾ (V × V)) ∘ 𝐵) ∩ ((2nd ↾ (V × V)) ∘ 𝐶)))
3 df-xrn 38389 . 2 (𝐴𝐶) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐶))
4 df-xrn 38389 . 2 (𝐵𝐶) = (((1st ↾ (V × V)) ∘ 𝐵) ∩ ((2nd ↾ (V × V)) ∘ 𝐶))
52, 3, 43eqtr4g 2795 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3459  cin 3925   × cxp 5652  ccnv 5653  cres 5656  ccom 5658  1st c1st 7986  2nd c2nd 7987  cxrn 38198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-in 3933  df-ss 3943  df-br 5120  df-opab 5182  df-co 5663  df-xrn 38389
This theorem is referenced by:  xrneq1i  38396  xrneq1d  38397  xrneq12  38401
  Copyright terms: Public domain W3C validator