| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| Ref | Expression |
|---|---|
| xrneq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq2 5825 | . . 3 ⊢ (𝐴 = 𝐵 → (◡(1st ↾ (V × V)) ∘ 𝐴) = (◡(1st ↾ (V × V)) ∘ 𝐵)) | |
| 2 | 1 | ineq1d 4185 | . 2 ⊢ (𝐴 = 𝐵 → ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐶)) = ((◡(1st ↾ (V × V)) ∘ 𝐵) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐶))) |
| 3 | df-xrn 38360 | . 2 ⊢ (𝐴 ⋉ 𝐶) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐶)) | |
| 4 | df-xrn 38360 | . 2 ⊢ (𝐵 ⋉ 𝐶) = ((◡(1st ↾ (V × V)) ∘ 𝐵) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐶)) | |
| 5 | 2, 3, 4 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3450 ∩ cin 3916 × cxp 5639 ◡ccnv 5640 ↾ cres 5643 ∘ ccom 5645 1st c1st 7969 2nd c2nd 7970 ⋉ cxrn 38175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-in 3924 df-ss 3934 df-br 5111 df-opab 5173 df-co 5650 df-xrn 38360 |
| This theorem is referenced by: xrneq1i 38371 xrneq1d 38372 xrneq12 38376 |
| Copyright terms: Public domain | W3C validator |