| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| Ref | Expression |
|---|---|
| xrneq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq2 5804 | . . 3 ⊢ (𝐴 = 𝐵 → (◡(1st ↾ (V × V)) ∘ 𝐴) = (◡(1st ↾ (V × V)) ∘ 𝐵)) | |
| 2 | 1 | ineq1d 4168 | . 2 ⊢ (𝐴 = 𝐵 → ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐶)) = ((◡(1st ↾ (V × V)) ∘ 𝐵) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐶))) |
| 3 | df-xrn 38477 | . 2 ⊢ (𝐴 ⋉ 𝐶) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐶)) | |
| 4 | df-xrn 38477 | . 2 ⊢ (𝐵 ⋉ 𝐶) = ((◡(1st ↾ (V × V)) ∘ 𝐵) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐶)) | |
| 5 | 2, 3, 4 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Vcvv 3437 ∩ cin 3897 × cxp 5619 ◡ccnv 5620 ↾ cres 5623 ∘ ccom 5625 1st c1st 7928 2nd c2nd 7929 ⋉ cxrn 38287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-in 3905 df-ss 3915 df-br 5096 df-opab 5158 df-co 5630 df-xrn 38477 |
| This theorem is referenced by: xrneq1i 38494 xrneq1d 38495 xrneq12 38499 |
| Copyright terms: Public domain | W3C validator |