Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq1 Structured version   Visualization version   GIF version

Theorem xrneq1 38370
Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.)
Assertion
Ref Expression
xrneq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem xrneq1
StepHypRef Expression
1 coeq2 5825 . . 3 (𝐴 = 𝐵 → ((1st ↾ (V × V)) ∘ 𝐴) = ((1st ↾ (V × V)) ∘ 𝐵))
21ineq1d 4185 . 2 (𝐴 = 𝐵 → (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐶)) = (((1st ↾ (V × V)) ∘ 𝐵) ∩ ((2nd ↾ (V × V)) ∘ 𝐶)))
3 df-xrn 38360 . 2 (𝐴𝐶) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐶))
4 df-xrn 38360 . 2 (𝐵𝐶) = (((1st ↾ (V × V)) ∘ 𝐵) ∩ ((2nd ↾ (V × V)) ∘ 𝐶))
52, 3, 43eqtr4g 2790 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3450  cin 3916   × cxp 5639  ccnv 5640  cres 5643  ccom 5645  1st c1st 7969  2nd c2nd 7970  cxrn 38175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-in 3924  df-ss 3934  df-br 5111  df-opab 5173  df-co 5650  df-xrn 38360
This theorem is referenced by:  xrneq1i  38371  xrneq1d  38372  xrneq12  38376
  Copyright terms: Public domain W3C validator