Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnres3 Structured version   Visualization version   GIF version

Theorem xrnres3 35812
Description: Two ways to express restriction of range Cartesian product, see also xrnres 35810, xrnres2 35811. (Contributed by Peter Mazsa, 28-Mar-2020.)
Assertion
Ref Expression
xrnres3 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ (𝑆𝐴))

Proof of Theorem xrnres3
StepHypRef Expression
1 resco 6070 . . 3 (((1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) = ((1st ↾ (V × V)) ∘ (𝑅𝐴))
2 resco 6070 . . 3 (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴) = ((2nd ↾ (V × V)) ∘ (𝑆𝐴))
31, 2ineq12i 4137 . 2 ((((1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = (((1st ↾ (V × V)) ∘ (𝑅𝐴)) ∩ ((2nd ↾ (V × V)) ∘ (𝑆𝐴)))
4 df-xrn 35783 . . . 4 (𝑅𝑆) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
54reseq1i 5814 . . 3 ((𝑅𝑆) ↾ 𝐴) = ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴)
6 resindir 5835 . . 3 ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) = ((((1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴))
75, 6eqtri 2821 . 2 ((𝑅𝑆) ↾ 𝐴) = ((((1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴))
8 df-xrn 35783 . 2 ((𝑅𝐴) ⋉ (𝑆𝐴)) = (((1st ↾ (V × V)) ∘ (𝑅𝐴)) ∩ ((2nd ↾ (V × V)) ∘ (𝑆𝐴)))
93, 7, 83eqtr4i 2831 1 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ (𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  Vcvv 3441  cin 3880   × cxp 5517  ccnv 5518  cres 5521  ccom 5523  1st c1st 7669  2nd c2nd 7670  cxrn 35612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-co 5528  df-res 5531  df-xrn 35783
This theorem is referenced by:  xrnres4  35813  xrnresex  35814
  Copyright terms: Public domain W3C validator