| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnres3 | Structured version Visualization version GIF version | ||
| Description: Two ways to express restriction of range Cartesian product, see also xrnres 38344, xrnres2 38345. (Contributed by Peter Mazsa, 28-Mar-2020.) |
| Ref | Expression |
|---|---|
| xrnres3 | ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resco 6252 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) = (◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) | |
| 2 | resco 6252 | . . 3 ⊢ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴) = (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴)) | |
| 3 | 1, 2 | ineq12i 4200 | . 2 ⊢ (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) ∩ (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴))) |
| 4 | df-xrn 38313 | . . . 4 ⊢ (𝑅 ⋉ 𝑆) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) | |
| 5 | 4 | reseq1i 5975 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) |
| 6 | resindir 5996 | . . 3 ⊢ (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) | |
| 7 | 5, 6 | eqtri 2757 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) |
| 8 | df-xrn 38313 | . 2 ⊢ ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) ∩ (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴))) | |
| 9 | 3, 7, 8 | 3eqtr4i 2767 | 1 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 Vcvv 3464 ∩ cin 3932 × cxp 5665 ◡ccnv 5666 ↾ cres 5669 ∘ ccom 5671 1st c1st 7995 2nd c2nd 7996 ⋉ cxrn 38122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-xp 5673 df-rel 5674 df-co 5676 df-res 5679 df-xrn 38313 |
| This theorem is referenced by: xrnres4 38347 xrnresex 38348 |
| Copyright terms: Public domain | W3C validator |