Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnres3 | Structured version Visualization version GIF version |
Description: Two ways to express restriction of range Cartesian product, see also xrnres 36537, xrnres2 36538. (Contributed by Peter Mazsa, 28-Mar-2020.) |
Ref | Expression |
---|---|
xrnres3 | ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resco 6153 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) = (◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) | |
2 | resco 6153 | . . 3 ⊢ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴) = (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴)) | |
3 | 1, 2 | ineq12i 4150 | . 2 ⊢ (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) ∩ (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴))) |
4 | df-xrn 36510 | . . . 4 ⊢ (𝑅 ⋉ 𝑆) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) | |
5 | 4 | reseq1i 5886 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) |
6 | resindir 5907 | . . 3 ⊢ (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) | |
7 | 5, 6 | eqtri 2768 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) |
8 | df-xrn 36510 | . 2 ⊢ ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) ∩ (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴))) | |
9 | 3, 7, 8 | 3eqtr4i 2778 | 1 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 Vcvv 3431 ∩ cin 3891 × cxp 5588 ◡ccnv 5589 ↾ cres 5592 ∘ ccom 5594 1st c1st 7823 2nd c2nd 7824 ⋉ cxrn 36341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-rel 5597 df-co 5599 df-res 5602 df-xrn 36510 |
This theorem is referenced by: xrnres4 36540 xrnresex 36541 |
Copyright terms: Public domain | W3C validator |