![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnres | Structured version Visualization version GIF version |
Description: Two ways to express restriction of range Cartesian product, see also xrnres2 37739, xrnres3 37740. (Contributed by Peter Mazsa, 5-Jun-2021.) |
Ref | Expression |
---|---|
xrnres | ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resco 6249 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) = (◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) | |
2 | 1 | ineq1i 4208 | . 2 ⊢ (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) = ((◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) |
3 | df-xrn 37707 | . . . 4 ⊢ (𝑅 ⋉ 𝑆) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) | |
4 | 3 | reseq1i 5977 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) |
5 | inres2 37578 | . . 3 ⊢ (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) | |
6 | 4, 5 | eqtr4i 2762 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) |
7 | df-xrn 37707 | . 2 ⊢ ((𝑅 ↾ 𝐴) ⋉ 𝑆) = ((◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) | |
8 | 2, 6, 7 | 3eqtr4i 2769 | 1 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 Vcvv 3473 ∩ cin 3947 × cxp 5674 ◡ccnv 5675 ↾ cres 5678 ∘ ccom 5680 1st c1st 7977 2nd c2nd 7978 ⋉ cxrn 37508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-co 5685 df-res 5688 df-xrn 37707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |