Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnres Structured version   Visualization version   GIF version

Theorem xrnres 36528
Description: Two ways to express restriction of range Cartesian product, see also xrnres2 36529, xrnres3 36530. (Contributed by Peter Mazsa, 5-Jun-2021.)
Assertion
Ref Expression
xrnres ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ 𝑆)

Proof of Theorem xrnres
StepHypRef Expression
1 resco 6154 . . 3 (((1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) = ((1st ↾ (V × V)) ∘ (𝑅𝐴))
21ineq1i 4142 . 2 ((((1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) = (((1st ↾ (V × V)) ∘ (𝑅𝐴)) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
3 df-xrn 36501 . . . 4 (𝑅𝑆) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
43reseq1i 5887 . . 3 ((𝑅𝑆) ↾ 𝐴) = ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴)
5 inres2 36384 . . 3 ((((1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) = ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴)
64, 5eqtr4i 2769 . 2 ((𝑅𝑆) ↾ 𝐴) = ((((1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
7 df-xrn 36501 . 2 ((𝑅𝐴) ⋉ 𝑆) = (((1st ↾ (V × V)) ∘ (𝑅𝐴)) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
82, 6, 73eqtr4i 2776 1 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3432  cin 3886   × cxp 5587  ccnv 5588  cres 5591  ccom 5593  1st c1st 7829  2nd c2nd 7830  cxrn 36332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-co 5598  df-res 5601  df-xrn 36501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator