| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnres | Structured version Visualization version GIF version | ||
| Description: Two ways to express restriction of range Cartesian product, see also xrnres2 38396, xrnres3 38397. (Contributed by Peter Mazsa, 5-Jun-2021.) |
| Ref | Expression |
|---|---|
| xrnres | ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resco 6226 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) = (◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) | |
| 2 | 1 | ineq1i 4182 | . 2 ⊢ (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) = ((◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) |
| 3 | df-xrn 38360 | . . . 4 ⊢ (𝑅 ⋉ 𝑆) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) | |
| 4 | 3 | reseq1i 5949 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) |
| 5 | inres2 38241 | . . 3 ⊢ (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) | |
| 6 | 4, 5 | eqtr4i 2756 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) |
| 7 | df-xrn 38360 | . 2 ⊢ ((𝑅 ↾ 𝐴) ⋉ 𝑆) = ((◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) | |
| 8 | 2, 6, 7 | 3eqtr4i 2763 | 1 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ∩ cin 3916 × cxp 5639 ◡ccnv 5640 ↾ cres 5643 ∘ ccom 5645 1st c1st 7969 2nd c2nd 7970 ⋉ cxrn 38175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-co 5650 df-res 5653 df-xrn 38360 |
| This theorem is referenced by: dmxrncnvepres 38402 |
| Copyright terms: Public domain | W3C validator |