![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnres | Structured version Visualization version GIF version |
Description: Two ways to express restriction of range Cartesian product, see also xrnres2 38359, xrnres3 38360. (Contributed by Peter Mazsa, 5-Jun-2021.) |
Ref | Expression |
---|---|
xrnres | ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resco 6281 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) = (◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) | |
2 | 1 | ineq1i 4237 | . 2 ⊢ (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) = ((◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) |
3 | df-xrn 38327 | . . . 4 ⊢ (𝑅 ⋉ 𝑆) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) | |
4 | 3 | reseq1i 6005 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) |
5 | inres2 38201 | . . 3 ⊢ (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) | |
6 | 4, 5 | eqtr4i 2771 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) |
7 | df-xrn 38327 | . 2 ⊢ ((𝑅 ↾ 𝐴) ⋉ 𝑆) = ((◡(1st ↾ (V × V)) ∘ (𝑅 ↾ 𝐴)) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) | |
8 | 2, 6, 7 | 3eqtr4i 2778 | 1 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ∩ cin 3975 × cxp 5698 ◡ccnv 5699 ↾ cres 5702 ∘ ccom 5704 1st c1st 8028 2nd c2nd 8029 ⋉ cxrn 38134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-co 5709 df-res 5712 df-xrn 38327 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |