Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnres Structured version   Visualization version   GIF version

Theorem xrnres 36524
Description: Two ways to express restriction of range Cartesian product, see also xrnres2 36525, xrnres3 36526. (Contributed by Peter Mazsa, 5-Jun-2021.)
Assertion
Ref Expression
xrnres ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ 𝑆)

Proof of Theorem xrnres
StepHypRef Expression
1 resco 6153 . . 3 (((1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) = ((1st ↾ (V × V)) ∘ (𝑅𝐴))
21ineq1i 4148 . 2 ((((1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) = (((1st ↾ (V × V)) ∘ (𝑅𝐴)) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
3 df-xrn 36497 . . . 4 (𝑅𝑆) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
43reseq1i 5886 . . 3 ((𝑅𝑆) ↾ 𝐴) = ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴)
5 inres2 36380 . . 3 ((((1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) = ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴)
64, 5eqtr4i 2771 . 2 ((𝑅𝑆) ↾ 𝐴) = ((((1st ↾ (V × V)) ∘ 𝑅) ↾ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
7 df-xrn 36497 . 2 ((𝑅𝐴) ⋉ 𝑆) = (((1st ↾ (V × V)) ∘ (𝑅𝐴)) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
82, 6, 73eqtr4i 2778 1 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  Vcvv 3431  cin 3891   × cxp 5588  ccnv 5589  cres 5592  ccom 5594  1st c1st 7822  2nd c2nd 7823  cxrn 36328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-xp 5596  df-rel 5597  df-co 5599  df-res 5602  df-xrn 36497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator