| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcnvin | Structured version Visualization version GIF version | ||
| Description: Intersection with a converse, binary relation. (Contributed by Peter Mazsa, 24-Mar-2024.) |
| Ref | Expression |
|---|---|
| brcnvin | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ ◡𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑆𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brin 5177 | . 2 ⊢ (𝐴(𝑅 ∩ ◡𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴◡𝑆𝐵)) | |
| 2 | brcnvg 5872 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴◡𝑆𝐵 ↔ 𝐵𝑆𝐴)) | |
| 3 | 2 | anbi2d 630 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴𝑅𝐵 ∧ 𝐴◡𝑆𝐵) ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑆𝐴))) |
| 4 | 1, 3 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ ◡𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑆𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∩ cin 3932 class class class wbr 5125 ◡ccnv 5666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-cnv 5675 |
| This theorem is referenced by: dfantisymrel5 38704 |
| Copyright terms: Public domain | W3C validator |