Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvin Structured version   Visualization version   GIF version

Theorem brcnvin 38393
Description: Intersection with a converse, binary relation. (Contributed by Peter Mazsa, 24-Mar-2024.)
Assertion
Ref Expression
brcnvin ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐵𝑆𝐴)))

Proof of Theorem brcnvin
StepHypRef Expression
1 brin 5176 . 2 (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
2 brcnvg 5864 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝑆𝐵𝐵𝑆𝐴))
32anbi2d 630 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑅𝐵𝐴𝑆𝐵) ↔ (𝐴𝑅𝐵𝐵𝑆𝐴)))
41, 3bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐵𝑆𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  cin 3930   class class class wbr 5124  ccnv 5658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-cnv 5667
This theorem is referenced by:  dfantisymrel5  38785
  Copyright terms: Public domain W3C validator