Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvin Structured version   Visualization version   GIF version

Theorem brcnvin 38312
Description: Intersection with a converse, binary relation. (Contributed by Peter Mazsa, 24-Mar-2024.)
Assertion
Ref Expression
brcnvin ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐵𝑆𝐴)))

Proof of Theorem brcnvin
StepHypRef Expression
1 brin 5177 . 2 (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
2 brcnvg 5872 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝑆𝐵𝐵𝑆𝐴))
32anbi2d 630 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑅𝐵𝐴𝑆𝐵) ↔ (𝐴𝑅𝐵𝐵𝑆𝐴)))
41, 3bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐵𝑆𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  cin 3932   class class class wbr 5125  ccnv 5666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-cnv 5675
This theorem is referenced by:  dfantisymrel5  38704
  Copyright terms: Public domain W3C validator