Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcnvin | Structured version Visualization version GIF version |
Description: Intersection with a converse, binary relation. (Contributed by Peter Mazsa, 24-Mar-2024.) |
Ref | Expression |
---|---|
brcnvin | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ ◡𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑆𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brin 5133 | . 2 ⊢ (𝐴(𝑅 ∩ ◡𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴◡𝑆𝐵)) | |
2 | brcnvg 5801 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴◡𝑆𝐵 ↔ 𝐵𝑆𝐴)) | |
3 | 2 | anbi2d 630 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴𝑅𝐵 ∧ 𝐴◡𝑆𝐵) ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑆𝐴))) |
4 | 1, 3 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ ◡𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑆𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2104 ∩ cin 3891 class class class wbr 5081 ◡ccnv 5599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-cnv 5608 |
This theorem is referenced by: dfantisymrel5 36976 |
Copyright terms: Public domain | W3C validator |