Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvin Structured version   Visualization version   GIF version

Theorem brcnvin 36584
Description: Intersection with a converse, binary relation. (Contributed by Peter Mazsa, 24-Mar-2024.)
Assertion
Ref Expression
brcnvin ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐵𝑆𝐴)))

Proof of Theorem brcnvin
StepHypRef Expression
1 brin 5133 . 2 (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
2 brcnvg 5801 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝑆𝐵𝐵𝑆𝐴))
32anbi2d 630 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑅𝐵𝐴𝑆𝐵) ↔ (𝐴𝑅𝐵𝐵𝑆𝐴)))
41, 3bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐵𝑆𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2104  cin 3891   class class class wbr 5081  ccnv 5599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-cnv 5608
This theorem is referenced by:  dfantisymrel5  36976
  Copyright terms: Public domain W3C validator