Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvin Structured version   Visualization version   GIF version

Theorem brcnvin 38345
Description: Intersection with a converse, binary relation. (Contributed by Peter Mazsa, 24-Mar-2024.)
Assertion
Ref Expression
brcnvin ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐵𝑆𝐴)))

Proof of Theorem brcnvin
StepHypRef Expression
1 brin 5154 . 2 (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
2 brcnvg 5833 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝑆𝐵𝐵𝑆𝐴))
32anbi2d 630 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑅𝐵𝐴𝑆𝐵) ↔ (𝐴𝑅𝐵𝐵𝑆𝐴)))
41, 3bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐵𝑆𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  cin 3910   class class class wbr 5102  ccnv 5630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-cnv 5639
This theorem is referenced by:  dfantisymrel5  38747
  Copyright terms: Public domain W3C validator