![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnres2 | Structured version Visualization version GIF version |
Description: Two ways to express restriction of range Cartesian product, see also xrnres 37728, xrnres3 37730. (Contributed by Peter Mazsa, 6-Sep-2021.) |
Ref | Expression |
---|---|
xrnres2 | ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resco 6239 | . . 3 ⊢ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴) = (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴)) | |
2 | 1 | ineq2i 4201 | . 2 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴))) |
3 | df-xrn 37697 | . . . 4 ⊢ (𝑅 ⋉ 𝑆) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) | |
4 | 3 | reseq1i 5967 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) |
5 | inres 5989 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) | |
6 | 4, 5 | eqtr4i 2755 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) |
7 | df-xrn 37697 | . 2 ⊢ (𝑅 ⋉ (𝑆 ↾ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴))) | |
8 | 2, 6, 7 | 3eqtr4i 2762 | 1 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 Vcvv 3466 ∩ cin 3939 × cxp 5664 ◡ccnv 5665 ↾ cres 5668 ∘ ccom 5670 1st c1st 7966 2nd c2nd 7967 ⋉ cxrn 37498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-co 5675 df-res 5678 df-xrn 37697 |
This theorem is referenced by: xrnresex 37732 br1cossxrnres 37774 disjxrnres5 38073 |
Copyright terms: Public domain | W3C validator |