Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnres2 Structured version   Visualization version   GIF version

Theorem xrnres2 38460
Description: Two ways to express restriction of range Cartesian product, see also xrnres 38459, xrnres3 38461. (Contributed by Peter Mazsa, 6-Sep-2021.)
Assertion
Ref Expression
xrnres2 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))

Proof of Theorem xrnres2
StepHypRef Expression
1 resco 6197 . . 3 (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴) = ((2nd ↾ (V × V)) ∘ (𝑆𝐴))
21ineq2i 4164 . 2 (((1st ↾ (V × V)) ∘ 𝑅) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ (𝑆𝐴)))
3 df-xrn 38414 . . . 4 (𝑅𝑆) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
43reseq1i 5923 . . 3 ((𝑅𝑆) ↾ 𝐴) = ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴)
5 inres 5945 . . 3 (((1st ↾ (V × V)) ∘ 𝑅) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴)
64, 5eqtr4i 2757 . 2 ((𝑅𝑆) ↾ 𝐴) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴))
7 df-xrn 38414 . 2 (𝑅 ⋉ (𝑆𝐴)) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ (𝑆𝐴)))
82, 6, 73eqtr4i 2764 1 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cin 3896   × cxp 5612  ccnv 5613  cres 5616  ccom 5618  1st c1st 7919  2nd c2nd 7920  cxrn 38224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-co 5623  df-res 5626  df-xrn 38414
This theorem is referenced by:  xrnresex  38463  dmxrncnvepres  38466  dfblockliftmap2  38484  br1cossxrnres  38560  disjxrnres5  38855
  Copyright terms: Public domain W3C validator