Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnres2 | Structured version Visualization version GIF version |
Description: Two ways to express restriction of range Cartesian product, see also xrnres 36455, xrnres3 36457. (Contributed by Peter Mazsa, 6-Sep-2021.) |
Ref | Expression |
---|---|
xrnres2 | ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resco 6143 | . . 3 ⊢ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴) = (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴)) | |
2 | 1 | ineq2i 4140 | . 2 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴))) |
3 | df-xrn 36428 | . . . 4 ⊢ (𝑅 ⋉ 𝑆) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) | |
4 | 3 | reseq1i 5876 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) |
5 | inres 5898 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) | |
6 | 4, 5 | eqtr4i 2769 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) |
7 | df-xrn 36428 | . 2 ⊢ (𝑅 ⋉ (𝑆 ↾ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴))) | |
8 | 2, 6, 7 | 3eqtr4i 2776 | 1 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∩ cin 3882 × cxp 5578 ◡ccnv 5579 ↾ cres 5582 ∘ ccom 5584 1st c1st 7802 2nd c2nd 7803 ⋉ cxrn 36259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-co 5589 df-res 5592 df-xrn 36428 |
This theorem is referenced by: xrnresex 36459 br1cossxrnres 36493 |
Copyright terms: Public domain | W3C validator |