Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnres2 Structured version   Visualization version   GIF version

Theorem xrnres2 38396
Description: Two ways to express restriction of range Cartesian product, see also xrnres 38395, xrnres3 38397. (Contributed by Peter Mazsa, 6-Sep-2021.)
Assertion
Ref Expression
xrnres2 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))

Proof of Theorem xrnres2
StepHypRef Expression
1 resco 6226 . . 3 (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴) = ((2nd ↾ (V × V)) ∘ (𝑆𝐴))
21ineq2i 4183 . 2 (((1st ↾ (V × V)) ∘ 𝑅) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ (𝑆𝐴)))
3 df-xrn 38360 . . . 4 (𝑅𝑆) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
43reseq1i 5949 . . 3 ((𝑅𝑆) ↾ 𝐴) = ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴)
5 inres 5971 . . 3 (((1st ↾ (V × V)) ∘ 𝑅) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴)
64, 5eqtr4i 2756 . 2 ((𝑅𝑆) ↾ 𝐴) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴))
7 df-xrn 38360 . 2 (𝑅 ⋉ (𝑆𝐴)) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ (𝑆𝐴)))
82, 6, 73eqtr4i 2763 1 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3450  cin 3916   × cxp 5639  ccnv 5640  cres 5643  ccom 5645  1st c1st 7969  2nd c2nd 7970  cxrn 38175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-co 5650  df-res 5653  df-xrn 38360
This theorem is referenced by:  xrnresex  38399  dmxrncnvepres  38402  br1cossxrnres  38446  disjxrnres5  38746
  Copyright terms: Public domain W3C validator