| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnres2 | Structured version Visualization version GIF version | ||
| Description: Two ways to express restriction of range Cartesian product, see also xrnres 38459, xrnres3 38461. (Contributed by Peter Mazsa, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| xrnres2 | ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resco 6197 | . . 3 ⊢ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴) = (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴)) | |
| 2 | 1 | ineq2i 4164 | . 2 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴))) |
| 3 | df-xrn 38414 | . . . 4 ⊢ (𝑅 ⋉ 𝑆) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) | |
| 4 | 3 | reseq1i 5923 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) |
| 5 | inres 5945 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) | |
| 6 | 4, 5 | eqtr4i 2757 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) |
| 7 | df-xrn 38414 | . 2 ⊢ (𝑅 ⋉ (𝑆 ↾ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴))) | |
| 8 | 2, 6, 7 | 3eqtr4i 2764 | 1 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∩ cin 3896 × cxp 5612 ◡ccnv 5613 ↾ cres 5616 ∘ ccom 5618 1st c1st 7919 2nd c2nd 7920 ⋉ cxrn 38224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-co 5623 df-res 5626 df-xrn 38414 |
| This theorem is referenced by: xrnresex 38463 dmxrncnvepres 38466 dfblockliftmap2 38484 br1cossxrnres 38560 disjxrnres5 38855 |
| Copyright terms: Public domain | W3C validator |