Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnres2 Structured version   Visualization version   GIF version

Theorem xrnres2 37729
Description: Two ways to express restriction of range Cartesian product, see also xrnres 37728, xrnres3 37730. (Contributed by Peter Mazsa, 6-Sep-2021.)
Assertion
Ref Expression
xrnres2 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))

Proof of Theorem xrnres2
StepHypRef Expression
1 resco 6239 . . 3 (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴) = ((2nd ↾ (V × V)) ∘ (𝑆𝐴))
21ineq2i 4201 . 2 (((1st ↾ (V × V)) ∘ 𝑅) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ (𝑆𝐴)))
3 df-xrn 37697 . . . 4 (𝑅𝑆) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
43reseq1i 5967 . . 3 ((𝑅𝑆) ↾ 𝐴) = ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴)
5 inres 5989 . . 3 (((1st ↾ (V × V)) ∘ 𝑅) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴)
64, 5eqtr4i 2755 . 2 ((𝑅𝑆) ↾ 𝐴) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴))
7 df-xrn 37697 . 2 (𝑅 ⋉ (𝑆𝐴)) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ (𝑆𝐴)))
82, 6, 73eqtr4i 2762 1 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  Vcvv 3466  cin 3939   × cxp 5664  ccnv 5665  cres 5668  ccom 5670  1st c1st 7966  2nd c2nd 7967  cxrn 37498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-rel 5673  df-co 5675  df-res 5678  df-xrn 37697
This theorem is referenced by:  xrnresex  37732  br1cossxrnres  37774  disjxrnres5  38073
  Copyright terms: Public domain W3C validator