![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnres2 | Structured version Visualization version GIF version |
Description: Two ways to express restriction of range Cartesian product, see also xrnres 38384, xrnres3 38386. (Contributed by Peter Mazsa, 6-Sep-2021.) |
Ref | Expression |
---|---|
xrnres2 | ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resco 6272 | . . 3 ⊢ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴) = (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴)) | |
2 | 1 | ineq2i 4225 | . 2 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴))) |
3 | df-xrn 38353 | . . . 4 ⊢ (𝑅 ⋉ 𝑆) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) | |
4 | 3 | reseq1i 5996 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) |
5 | inres 6018 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = (((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴) | |
6 | 4, 5 | eqtr4i 2766 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ ((◡(2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) |
7 | df-xrn 38353 | . 2 ⊢ (𝑅 ⋉ (𝑆 ↾ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ 𝑅) ∩ (◡(2nd ↾ (V × V)) ∘ (𝑆 ↾ 𝐴))) | |
8 | 2, 6, 7 | 3eqtr4i 2773 | 1 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3478 ∩ cin 3962 × cxp 5687 ◡ccnv 5688 ↾ cres 5691 ∘ ccom 5693 1st c1st 8011 2nd c2nd 8012 ⋉ cxrn 38161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-co 5698 df-res 5701 df-xrn 38353 |
This theorem is referenced by: xrnresex 38388 br1cossxrnres 38430 disjxrnres5 38729 |
Copyright terms: Public domain | W3C validator |