Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnres2 Structured version   Visualization version   GIF version

Theorem xrnres2 38359
Description: Two ways to express restriction of range Cartesian product, see also xrnres 38358, xrnres3 38360. (Contributed by Peter Mazsa, 6-Sep-2021.)
Assertion
Ref Expression
xrnres2 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))

Proof of Theorem xrnres2
StepHypRef Expression
1 resco 6281 . . 3 (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴) = ((2nd ↾ (V × V)) ∘ (𝑆𝐴))
21ineq2i 4238 . 2 (((1st ↾ (V × V)) ∘ 𝑅) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ (𝑆𝐴)))
3 df-xrn 38327 . . . 4 (𝑅𝑆) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
43reseq1i 6005 . . 3 ((𝑅𝑆) ↾ 𝐴) = ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴)
5 inres 6027 . . 3 (((1st ↾ (V × V)) ∘ 𝑅) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴)) = ((((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆)) ↾ 𝐴)
64, 5eqtr4i 2771 . 2 ((𝑅𝑆) ↾ 𝐴) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ (((2nd ↾ (V × V)) ∘ 𝑆) ↾ 𝐴))
7 df-xrn 38327 . 2 (𝑅 ⋉ (𝑆𝐴)) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ (𝑆𝐴)))
82, 6, 73eqtr4i 2778 1 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  cin 3975   × cxp 5698  ccnv 5699  cres 5702  ccom 5704  1st c1st 8028  2nd c2nd 8029  cxrn 38134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-co 5709  df-res 5712  df-xrn 38327
This theorem is referenced by:  xrnresex  38362  br1cossxrnres  38404  disjxrnres5  38703
  Copyright terms: Public domain W3C validator