Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrneq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
Ref | Expression |
---|---|
xrneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq2 5756 | . . 3 ⊢ (𝐴 = 𝐵 → (◡(2nd ↾ (V × V)) ∘ 𝐴) = (◡(2nd ↾ (V × V)) ∘ 𝐵)) | |
2 | 1 | ineq2d 4143 | . 2 ⊢ (𝐴 = 𝐵 → ((◡(1st ↾ (V × V)) ∘ 𝐶) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ 𝐶) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵))) |
3 | df-xrn 36428 | . 2 ⊢ (𝐶 ⋉ 𝐴) = ((◡(1st ↾ (V × V)) ∘ 𝐶) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐴)) | |
4 | df-xrn 36428 | . 2 ⊢ (𝐶 ⋉ 𝐵) = ((◡(1st ↾ (V × V)) ∘ 𝐶) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3422 ∩ cin 3882 × cxp 5578 ◡ccnv 5579 ↾ cres 5582 ∘ ccom 5584 1st c1st 7802 2nd c2nd 7803 ⋉ cxrn 36259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-co 5589 df-xrn 36428 |
This theorem is referenced by: xrneq2i 36438 xrneq2d 36439 xrneq12 36440 |
Copyright terms: Public domain | W3C validator |