Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrneq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
Ref | Expression |
---|---|
xrneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq2 5767 | . . 3 ⊢ (𝐴 = 𝐵 → (◡(2nd ↾ (V × V)) ∘ 𝐴) = (◡(2nd ↾ (V × V)) ∘ 𝐵)) | |
2 | 1 | ineq2d 4146 | . 2 ⊢ (𝐴 = 𝐵 → ((◡(1st ↾ (V × V)) ∘ 𝐶) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐴)) = ((◡(1st ↾ (V × V)) ∘ 𝐶) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵))) |
3 | df-xrn 36501 | . 2 ⊢ (𝐶 ⋉ 𝐴) = ((◡(1st ↾ (V × V)) ∘ 𝐶) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐴)) | |
4 | df-xrn 36501 | . 2 ⊢ (𝐶 ⋉ 𝐵) = ((◡(1st ↾ (V × V)) ∘ 𝐶) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) | |
5 | 2, 3, 4 | 3eqtr4g 2803 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3432 ∩ cin 3886 × cxp 5587 ◡ccnv 5588 ↾ cres 5591 ∘ ccom 5593 1st c1st 7829 2nd c2nd 7830 ⋉ cxrn 36332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-br 5075 df-opab 5137 df-co 5598 df-xrn 36501 |
This theorem is referenced by: xrneq2i 36511 xrneq2d 36512 xrneq12 36513 |
Copyright terms: Public domain | W3C validator |