Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq2 Structured version   Visualization version   GIF version

Theorem xrneq2 38403
Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.)
Assertion
Ref Expression
xrneq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem xrneq2
StepHypRef Expression
1 coeq2 5843 . . 3 (𝐴 = 𝐵 → ((2nd ↾ (V × V)) ∘ 𝐴) = ((2nd ↾ (V × V)) ∘ 𝐵))
21ineq2d 4200 . 2 (𝐴 = 𝐵 → (((1st ↾ (V × V)) ∘ 𝐶) ∩ ((2nd ↾ (V × V)) ∘ 𝐴)) = (((1st ↾ (V × V)) ∘ 𝐶) ∩ ((2nd ↾ (V × V)) ∘ 𝐵)))
3 df-xrn 38394 . 2 (𝐶𝐴) = (((1st ↾ (V × V)) ∘ 𝐶) ∩ ((2nd ↾ (V × V)) ∘ 𝐴))
4 df-xrn 38394 . 2 (𝐶𝐵) = (((1st ↾ (V × V)) ∘ 𝐶) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
52, 3, 43eqtr4g 2796 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3464  cin 3930   × cxp 5657  ccnv 5658  cres 5661  ccom 5663  1st c1st 7991  2nd c2nd 7992  cxrn 38203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-in 3938  df-ss 3948  df-br 5125  df-opab 5187  df-co 5668  df-xrn 38394
This theorem is referenced by:  xrneq2i  38404  xrneq2d  38405  xrneq12  38406
  Copyright terms: Public domain W3C validator