Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq2 Structured version   Visualization version   GIF version

Theorem xrneq2 36510
Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.)
Assertion
Ref Expression
xrneq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem xrneq2
StepHypRef Expression
1 coeq2 5767 . . 3 (𝐴 = 𝐵 → ((2nd ↾ (V × V)) ∘ 𝐴) = ((2nd ↾ (V × V)) ∘ 𝐵))
21ineq2d 4146 . 2 (𝐴 = 𝐵 → (((1st ↾ (V × V)) ∘ 𝐶) ∩ ((2nd ↾ (V × V)) ∘ 𝐴)) = (((1st ↾ (V × V)) ∘ 𝐶) ∩ ((2nd ↾ (V × V)) ∘ 𝐵)))
3 df-xrn 36501 . 2 (𝐶𝐴) = (((1st ↾ (V × V)) ∘ 𝐶) ∩ ((2nd ↾ (V × V)) ∘ 𝐴))
4 df-xrn 36501 . 2 (𝐶𝐵) = (((1st ↾ (V × V)) ∘ 𝐶) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
52, 3, 43eqtr4g 2803 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Vcvv 3432  cin 3886   × cxp 5587  ccnv 5588  cres 5591  ccom 5593  1st c1st 7829  2nd c2nd 7830  cxrn 36332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-br 5075  df-opab 5137  df-co 5598  df-xrn 36501
This theorem is referenced by:  xrneq2i  36511  xrneq2d  36512  xrneq12  36513
  Copyright terms: Public domain W3C validator