Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq2 Structured version   Visualization version   GIF version

Theorem xrneq2 37716
Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.)
Assertion
Ref Expression
xrneq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem xrneq2
StepHypRef Expression
1 coeq2 5858 . . 3 (𝐴 = 𝐵 → ((2nd ↾ (V × V)) ∘ 𝐴) = ((2nd ↾ (V × V)) ∘ 𝐵))
21ineq2d 4212 . 2 (𝐴 = 𝐵 → (((1st ↾ (V × V)) ∘ 𝐶) ∩ ((2nd ↾ (V × V)) ∘ 𝐴)) = (((1st ↾ (V × V)) ∘ 𝐶) ∩ ((2nd ↾ (V × V)) ∘ 𝐵)))
3 df-xrn 37707 . 2 (𝐶𝐴) = (((1st ↾ (V × V)) ∘ 𝐶) ∩ ((2nd ↾ (V × V)) ∘ 𝐴))
4 df-xrn 37707 . 2 (𝐶𝐵) = (((1st ↾ (V × V)) ∘ 𝐶) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
52, 3, 43eqtr4g 2796 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3473  cin 3947   × cxp 5674  ccnv 5675  cres 5678  ccom 5680  1st c1st 7977  2nd c2nd 7978  cxrn 37508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-in 3955  df-ss 3965  df-br 5149  df-opab 5211  df-co 5685  df-xrn 37707
This theorem is referenced by:  xrneq2i  37717  xrneq2d  37718  xrneq12  37719
  Copyright terms: Public domain W3C validator