MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsb3ALT Structured version   Visualization version   GIF version

Theorem dfsb3ALT 2546
Description: Alternate version of dfsb3 2487. (Contributed by NM, 6-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfsb1.ph (𝜃 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
Assertion
Ref Expression
dfsb3ALT (𝜃 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem dfsb3ALT
StepHypRef Expression
1 df-or 843 . 2 (((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)) ↔ (¬ (𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
2 dfsb1.ph . . 3 (𝜃 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
32dfsb2ALT 2545 . 2 (𝜃 ↔ ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
4 imnan 400 . . 3 ((𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ (𝑥 = 𝑦𝜑))
54imbi1i 351 . 2 (((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ (¬ (𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
61, 3, 53bitr4i 304 1 (𝜃 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  wal 1520  wex 1761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-10 2112  ax-12 2141  ax-13 2344
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-ex 1762  df-nf 1766
This theorem is referenced by:  sbnALT  2549
  Copyright terms: Public domain W3C validator