![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsb3ALT | Structured version Visualization version GIF version |
Description: Alternate version of dfsb3 2487. (Contributed by NM, 6-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfsb1.ph | ⊢ (𝜃 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
Ref | Expression |
---|---|
dfsb3ALT | ⊢ (𝜃 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 843 | . 2 ⊢ (((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (¬ (𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | dfsb1.ph | . . 3 ⊢ (𝜃 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
3 | 2 | dfsb2ALT 2545 | . 2 ⊢ (𝜃 ↔ ((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
4 | imnan 400 | . . 3 ⊢ ((𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ (𝑥 = 𝑦 ∧ 𝜑)) | |
5 | 4 | imbi1i 351 | . 2 ⊢ (((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (¬ (𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
6 | 1, 3, 5 | 3bitr4i 304 | 1 ⊢ (𝜃 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 ∀wal 1520 ∃wex 1761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-10 2112 ax-12 2141 ax-13 2344 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ex 1762 df-nf 1766 |
This theorem is referenced by: sbnALT 2549 |
Copyright terms: Public domain | W3C validator |