![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsb3 | Structured version Visualization version GIF version |
Description: An alternate definition of proper substitution df-sb 2066 that uses only primitive connectives (no defined terms) on the right-hand side. Usage of this theorem is discouraged because it depends on ax-13 2369. (Contributed by NM, 6-Mar-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfsb3 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 844 | . 2 ⊢ (((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (¬ (𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | dfsb2 2490 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
3 | imnan 398 | . . 3 ⊢ ((𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ (𝑥 = 𝑦 ∧ 𝜑)) | |
4 | 3 | imbi1i 348 | . 2 ⊢ (((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (¬ (𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
5 | 1, 2, 4 | 3bitr4i 302 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 843 ∀wal 1537 [wsb 2065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-12 2169 ax-13 2369 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ex 1780 df-nf 1784 df-sb 2066 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |