| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsb3 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of proper substitution df-sb 2064 that uses only primitive connectives (no defined terms) on the right-hand side. Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by NM, 6-Mar-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfsb3 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ (((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (¬ (𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | dfsb2 2496 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 3 | imnan 399 | . . 3 ⊢ ((𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ (𝑥 = 𝑦 ∧ 𝜑)) | |
| 4 | 3 | imbi1i 349 | . 2 ⊢ (((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (¬ (𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 5 | 1, 2, 4 | 3bitr4i 303 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1537 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |