Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsb3 Structured version   Visualization version   GIF version

Theorem dfsb3 2531
 Description: An alternate definition of proper substitution df-sb 2063 that uses only primitive connectives (no defined terms) on the right-hand side. (Contributed by NM, 6-Mar-2007.)
Assertion
Ref Expression
dfsb3 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem dfsb3
StepHypRef Expression
1 df-or 844 . 2 (((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)) ↔ (¬ (𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
2 dfsb2 2530 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
3 imnan 400 . . 3 ((𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ (𝑥 = 𝑦𝜑))
43imbi1i 351 . 2 (((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ (¬ (𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
51, 2, 43bitr4i 304 1 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∨ wo 843  ∀wal 1528  [wsb 2062 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-10 2138  ax-12 2169  ax-13 2385 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ex 1774  df-nf 1778  df-sb 2063 This theorem is referenced by:  sbnOLD  2539
 Copyright terms: Public domain W3C validator