![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbnALT | Structured version Visualization version GIF version |
Description: Alternate version of sbn 2253. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfsb1.ph | ⊢ (𝜃 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
dfsb1.n | ⊢ (𝜏 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑))) |
Ref | Expression |
---|---|
sbnALT | ⊢ (𝜏 ↔ ¬ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsb1.n | . . 3 ⊢ (𝜏 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑))) | |
2 | exanali 1840 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | 2 | anbi2i 622 | . . 3 ⊢ (((𝑥 = 𝑦 → ¬ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑)) ↔ ((𝑥 = 𝑦 → ¬ 𝜑) ∧ ¬ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
4 | annim 404 | . . 3 ⊢ (((𝑥 = 𝑦 → ¬ 𝜑) ∧ ¬ ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ¬ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
5 | 1, 3, 4 | 3bitri 298 | . 2 ⊢ (𝜏 ↔ ¬ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
6 | dfsb1.ph | . . 3 ⊢ (𝜃 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
7 | 6 | dfsb3ALT 2546 | . 2 ⊢ (𝜃 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
8 | 5, 7 | xchbinxr 336 | 1 ⊢ (𝜏 ↔ ¬ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1520 ∃wex 1761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-10 2112 ax-12 2141 ax-13 2344 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ex 1762 df-nf 1766 |
This theorem is referenced by: sbi2ALT 2561 sbanALT 2564 |
Copyright terms: Public domain | W3C validator |