MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbnALT Structured version   Visualization version   GIF version

Theorem sbnALT 2549
Description: Alternate version of sbn 2253. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
dfsb1.ph (𝜃 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
dfsb1.n (𝜏 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑)))
Assertion
Ref Expression
sbnALT (𝜏 ↔ ¬ 𝜃)

Proof of Theorem sbnALT
StepHypRef Expression
1 dfsb1.n . . 3 (𝜏 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑)))
2 exanali 1840 . . . 4 (∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝑥 = 𝑦𝜑))
32anbi2i 622 . . 3 (((𝑥 = 𝑦 → ¬ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑)) ↔ ((𝑥 = 𝑦 → ¬ 𝜑) ∧ ¬ ∀𝑥(𝑥 = 𝑦𝜑)))
4 annim 404 . . 3 (((𝑥 = 𝑦 → ¬ 𝜑) ∧ ¬ ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ¬ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
51, 3, 43bitri 298 . 2 (𝜏 ↔ ¬ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
6 dfsb1.ph . . 3 (𝜃 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
76dfsb3ALT 2546 . 2 (𝜃 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
85, 7xchbinxr 336 1 (𝜏 ↔ ¬ 𝜃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wal 1520  wex 1761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-10 2112  ax-12 2141  ax-13 2344
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-ex 1762  df-nf 1766
This theorem is referenced by:  sbi2ALT  2561  sbanALT  2564
  Copyright terms: Public domain W3C validator