| Step | Hyp | Ref
| Expression |
| 1 | | disjrel 38731 |
. . . . . 6
⊢ ( Disj
𝑅 → Rel 𝑅) |
| 2 | | releldmqs 38659 |
. . . . . . 7
⊢ (𝑣 ∈ V → (Rel 𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅))) |
| 3 | 2 | elv 3485 |
. . . . . 6
⊢ (Rel
𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅)) |
| 4 | 1, 3 | syl 17 |
. . . . 5
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅)) |
| 5 | | disjlem19 38802 |
. . . . . . . 8
⊢ (𝑥 ∈ V → ( Disj 𝑅 → ((𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅))) |
| 6 | 5 | elv 3485 |
. . . . . . 7
⊢ ( Disj
𝑅 → ((𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅)) |
| 7 | 6 | ralrimivv 3200 |
. . . . . 6
⊢ ( Disj
𝑅 → ∀𝑢 ∈ dom 𝑅∀𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅) |
| 8 | | 2r19.29 3139 |
. . . . . . 7
⊢
((∀𝑢 ∈
dom 𝑅∀𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅) → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅)) |
| 9 | 8 | ex 412 |
. . . . . 6
⊢
(∀𝑢 ∈
dom 𝑅∀𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 → (∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅 → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅))) |
| 10 | 7, 9 | syl 17 |
. . . . 5
⊢ ( Disj
𝑅 → (∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅 → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅))) |
| 11 | 4, 10 | sylbid 240 |
. . . 4
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅))) |
| 12 | | eqtr 2760 |
. . . . . . 7
⊢ ((𝑣 = [𝑢]𝑅 ∧ [𝑢]𝑅 = [𝑥] ≀ 𝑅) → 𝑣 = [𝑥] ≀ 𝑅) |
| 13 | 12 | ancoms 458 |
. . . . . 6
⊢ (([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅) → 𝑣 = [𝑥] ≀ 𝑅) |
| 14 | 13 | reximi 3084 |
. . . . 5
⊢
(∃𝑥 ∈ [
𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅) → ∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅) |
| 15 | 14 | reximi 3084 |
. . . 4
⊢
(∃𝑢 ∈ dom
𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅) → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅) |
| 16 | 11, 15 | syl6 35 |
. . 3
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)) |
| 17 | | releldmqscoss 38661 |
. . . . 5
⊢ (𝑣 ∈ V → (Rel 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))) |
| 18 | 17 | elv 3485 |
. . . 4
⊢ (Rel
𝑅 → (𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)) |
| 19 | 1, 18 | syl 17 |
. . 3
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)) |
| 20 | 16, 19 | sylibrd 259 |
. 2
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) → 𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅))) |
| 21 | 20 | ssrdv 3989 |
1
⊢ ( Disj
𝑅 → (dom 𝑅 / 𝑅) ⊆ (dom ≀ 𝑅 / ≀ 𝑅)) |