Step | Hyp | Ref
| Expression |
1 | | disjrel 36944 |
. . . . . 6
⊢ ( Disj
𝑅 → Rel 𝑅) |
2 | | releldmqs 36872 |
. . . . . . 7
⊢ (𝑣 ∈ V → (Rel 𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅))) |
3 | 2 | elv 3443 |
. . . . . 6
⊢ (Rel
𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅)) |
4 | 1, 3 | syl 17 |
. . . . 5
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅)) |
5 | | disjlem19 37015 |
. . . . . . . 8
⊢ (𝑥 ∈ V → ( Disj 𝑅 → ((𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅))) |
6 | 5 | elv 3443 |
. . . . . . 7
⊢ ( Disj
𝑅 → ((𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅)) |
7 | 6 | ralrimivv 3191 |
. . . . . 6
⊢ ( Disj
𝑅 → ∀𝑢 ∈ dom 𝑅∀𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅) |
8 | | 2r19.29 3132 |
. . . . . . 7
⊢
((∀𝑢 ∈
dom 𝑅∀𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅) → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅)) |
9 | 8 | ex 414 |
. . . . . 6
⊢
(∀𝑢 ∈
dom 𝑅∀𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 → (∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅 → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅))) |
10 | 7, 9 | syl 17 |
. . . . 5
⊢ ( Disj
𝑅 → (∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅 → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅))) |
11 | 4, 10 | sylbid 239 |
. . . 4
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅))) |
12 | | eqtr 2759 |
. . . . . . 7
⊢ ((𝑣 = [𝑢]𝑅 ∧ [𝑢]𝑅 = [𝑥] ≀ 𝑅) → 𝑣 = [𝑥] ≀ 𝑅) |
13 | 12 | ancoms 460 |
. . . . . 6
⊢ (([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅) → 𝑣 = [𝑥] ≀ 𝑅) |
14 | 13 | reximi 3083 |
. . . . 5
⊢
(∃𝑥 ∈ [
𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅) → ∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅) |
15 | 14 | reximi 3083 |
. . . 4
⊢
(∃𝑢 ∈ dom
𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑢]𝑅) → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅) |
16 | 11, 15 | syl6 35 |
. . 3
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)) |
17 | | releldmqscoss 36874 |
. . . . 5
⊢ (𝑣 ∈ V → (Rel 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))) |
18 | 17 | elv 3443 |
. . . 4
⊢ (Rel
𝑅 → (𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)) |
19 | 1, 18 | syl 17 |
. . 3
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)) |
20 | 16, 19 | sylibrd 259 |
. 2
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) → 𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅))) |
21 | 20 | ssrdv 3932 |
1
⊢ ( Disj
𝑅 → (dom 𝑅 / 𝑅) ⊆ (dom ≀ 𝑅 / ≀ 𝑅)) |