Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdmqsss Structured version   Visualization version   GIF version

Theorem disjdmqsss 38801
Description: Lemma for disjdmqseq 38804 via disjdmqs 38803. (Contributed by Peter Mazsa, 16-Sep-2021.)
Assertion
Ref Expression
disjdmqsss ( Disj 𝑅 → (dom 𝑅 / 𝑅) ⊆ (dom ≀ 𝑅 /𝑅))

Proof of Theorem disjdmqsss
Dummy variables 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjrel 38729 . . . . . 6 ( Disj 𝑅 → Rel 𝑅)
2 releldmqs 38657 . . . . . . 7 (𝑣 ∈ V → (Rel 𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅)))
32elv 3455 . . . . . 6 (Rel 𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅))
41, 3syl 17 . . . . 5 ( Disj 𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅))
5 disjlem19 38800 . . . . . . . 8 (𝑥 ∈ V → ( Disj 𝑅 → ((𝑢 ∈ dom 𝑅𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅)))
65elv 3455 . . . . . . 7 ( Disj 𝑅 → ((𝑢 ∈ dom 𝑅𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅))
76ralrimivv 3179 . . . . . 6 ( Disj 𝑅 → ∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅)
8 2r19.29 3120 . . . . . . 7 ((∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑢]𝑅))
98ex 412 . . . . . 6 (∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅 → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑢]𝑅)))
107, 9syl 17 . . . . 5 ( Disj 𝑅 → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑢]𝑅 → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑢]𝑅)))
114, 10sylbid 240 . . . 4 ( Disj 𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑢]𝑅)))
12 eqtr 2750 . . . . . . 7 ((𝑣 = [𝑢]𝑅 ∧ [𝑢]𝑅 = [𝑥] ≀ 𝑅) → 𝑣 = [𝑥] ≀ 𝑅)
1312ancoms 458 . . . . . 6 (([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑢]𝑅) → 𝑣 = [𝑥] ≀ 𝑅)
1413reximi 3068 . . . . 5 (∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑢]𝑅) → ∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)
1514reximi 3068 . . . 4 (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑢]𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)
1611, 15syl6 35 . . 3 ( Disj 𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))
17 releldmqscoss 38659 . . . . 5 (𝑣 ∈ V → (Rel 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)))
1817elv 3455 . . . 4 (Rel 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))
191, 18syl 17 . . 3 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))
2016, 19sylibrd 259 . 2 ( Disj 𝑅 → (𝑣 ∈ (dom 𝑅 / 𝑅) → 𝑣 ∈ (dom ≀ 𝑅 /𝑅)))
2120ssrdv 3955 1 ( Disj 𝑅 → (dom 𝑅 / 𝑅) ⊆ (dom ≀ 𝑅 /𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  dom cdm 5641  Rel wrel 5646  [cec 8672   / cqs 8673  ccoss 38176   Disj wdisjALTV 38210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rmo 3356  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-qs 8680  df-coss 38409  df-cnvrefrel 38525  df-disjALTV 38704
This theorem is referenced by:  disjdmqs  38803
  Copyright terms: Public domain W3C validator