Step | Hyp | Ref
| Expression |
1 | | disjrel 36944 |
. . . . . . . 8
⊢ ( Disj
𝑅 → Rel 𝑅) |
2 | | releldmqscoss 36874 |
. . . . . . . . 9
⊢ (𝑣 ∈ V → (Rel 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))) |
3 | 2 | elv 3443 |
. . . . . . . 8
⊢ (Rel
𝑅 → (𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)) |
4 | 1, 3 | syl 17 |
. . . . . . 7
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)) |
5 | | disjlem19 37015 |
. . . . . . . . . 10
⊢ (𝑥 ∈ V → ( Disj 𝑅 → ((𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅))) |
6 | 5 | elv 3443 |
. . . . . . . . 9
⊢ ( Disj
𝑅 → ((𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅)) |
7 | 6 | ralrimivv 3191 |
. . . . . . . 8
⊢ ( Disj
𝑅 → ∀𝑢 ∈ dom 𝑅∀𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅) |
8 | | 2r19.29 3132 |
. . . . . . . . 9
⊢
((∀𝑢 ∈
dom 𝑅∀𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑥] ≀ 𝑅)) |
9 | 8 | ex 414 |
. . . . . . . 8
⊢
(∀𝑢 ∈
dom 𝑅∀𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 → (∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅 → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑥] ≀ 𝑅))) |
10 | 7, 9 | syl 17 |
. . . . . . 7
⊢ ( Disj
𝑅 → (∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅 → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑥] ≀ 𝑅))) |
11 | 4, 10 | sylbid 239 |
. . . . . 6
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑥] ≀ 𝑅))) |
12 | | eqtr3 2762 |
. . . . . . . 8
⊢ (([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑥] ≀ 𝑅) → [𝑢]𝑅 = 𝑣) |
13 | 12 | reximi 3083 |
. . . . . . 7
⊢
(∃𝑥 ∈ [
𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑥] ≀ 𝑅) → ∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣) |
14 | 13 | reximi 3083 |
. . . . . 6
⊢
(∃𝑢 ∈ dom
𝑅∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ 𝑣 = [𝑥] ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣) |
15 | 11, 14 | syl6 35 |
. . . . 5
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣)) |
16 | | df-rex 3071 |
. . . . . . . 8
⊢
(∃𝑥 ∈ [
𝑢]𝑅[𝑢]𝑅 = 𝑣 ↔ ∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣)) |
17 | | 19.41v 1951 |
. . . . . . . 8
⊢
(∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣)) |
18 | 16, 17 | bitri 275 |
. . . . . . 7
⊢
(∃𝑥 ∈ [
𝑢]𝑅[𝑢]𝑅 = 𝑣 ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣)) |
19 | 18 | simprbi 498 |
. . . . . 6
⊢
(∃𝑥 ∈ [
𝑢]𝑅[𝑢]𝑅 = 𝑣 → [𝑢]𝑅 = 𝑣) |
20 | 19 | reximi 3083 |
. . . . 5
⊢
(∃𝑢 ∈ dom
𝑅∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 → ∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣) |
21 | 15, 20 | syl6 35 |
. . . 4
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣)) |
22 | | eqcom 2743 |
. . . . 5
⊢ ([𝑢]𝑅 = 𝑣 ↔ 𝑣 = [𝑢]𝑅) |
23 | 22 | rexbii 3093 |
. . . 4
⊢
(∃𝑢 ∈ dom
𝑅[𝑢]𝑅 = 𝑣 ↔ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅) |
24 | 21, 23 | syl6ib 251 |
. . 3
⊢ ( Disj
𝑅 → (𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅)) |
25 | 24 | ss2abdv 4002 |
. 2
⊢ ( Disj
𝑅 → {𝑣 ∣ 𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅)} ⊆ {𝑣 ∣ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅}) |
26 | | abid1 2878 |
. 2
⊢ (dom
≀ 𝑅 / ≀
𝑅) = {𝑣 ∣ 𝑣 ∈ (dom ≀ 𝑅 / ≀ 𝑅)} |
27 | | df-qs 8535 |
. 2
⊢ (dom
𝑅 / 𝑅) = {𝑣 ∣ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅} |
28 | 25, 26, 27 | 3sstr4g 3971 |
1
⊢ ( Disj
𝑅 → (dom ≀ 𝑅 / ≀ 𝑅) ⊆ (dom 𝑅 / 𝑅)) |