Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdmqscossss Structured version   Visualization version   GIF version

Theorem disjdmqscossss 38849
Description: Lemma for disjdmqseq 38851 via disjdmqs 38850. (Contributed by Peter Mazsa, 16-Sep-2021.)
Assertion
Ref Expression
disjdmqscossss ( Disj 𝑅 → (dom ≀ 𝑅 /𝑅) ⊆ (dom 𝑅 / 𝑅))

Proof of Theorem disjdmqscossss
Dummy variables 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjrel 38776 . . . . . . . 8 ( Disj 𝑅 → Rel 𝑅)
2 releldmqscoss 38706 . . . . . . . . 9 (𝑣 ∈ V → (Rel 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)))
32elv 3441 . . . . . . . 8 (Rel 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))
41, 3syl 17 . . . . . . 7 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))
5 disjlem19 38847 . . . . . . . . . 10 (𝑥 ∈ V → ( Disj 𝑅 → ((𝑢 ∈ dom 𝑅𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅)))
65elv 3441 . . . . . . . . 9 ( Disj 𝑅 → ((𝑢 ∈ dom 𝑅𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅))
76ralrimivv 3173 . . . . . . . 8 ( Disj 𝑅 → ∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅)
8 2r19.29 3118 . . . . . . . . 9 ((∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅))
98ex 412 . . . . . . . 8 (∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅 → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅)))
107, 9syl 17 . . . . . . 7 ( Disj 𝑅 → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅 → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅)))
114, 10sylbid 240 . . . . . 6 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅)))
12 eqtr3 2753 . . . . . . . 8 (([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅) → [𝑢]𝑅 = 𝑣)
1312reximi 3070 . . . . . . 7 (∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅) → ∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣)
1413reximi 3070 . . . . . 6 (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣)
1511, 14syl6 35 . . . . 5 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣))
16 df-rex 3057 . . . . . . . 8 (∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 ↔ ∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣))
17 19.41v 1950 . . . . . . . 8 (∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣))
1816, 17bitri 275 . . . . . . 7 (∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣))
1918simprbi 496 . . . . . 6 (∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 → [𝑢]𝑅 = 𝑣)
2019reximi 3070 . . . . 5 (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 → ∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣)
2115, 20syl6 35 . . . 4 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣))
22 eqcom 2738 . . . . 5 ([𝑢]𝑅 = 𝑣𝑣 = [𝑢]𝑅)
2322rexbii 3079 . . . 4 (∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣 ↔ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅)
2421, 23imbitrdi 251 . . 3 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅))
2524ss2abdv 4012 . 2 ( Disj 𝑅 → {𝑣𝑣 ∈ (dom ≀ 𝑅 /𝑅)} ⊆ {𝑣 ∣ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅})
26 abid1 2867 . 2 (dom ≀ 𝑅 /𝑅) = {𝑣𝑣 ∈ (dom ≀ 𝑅 /𝑅)}
27 df-qs 8628 . 2 (dom 𝑅 / 𝑅) = {𝑣 ∣ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅}
2825, 26, 273sstr4g 3983 1 ( Disj 𝑅 → (dom ≀ 𝑅 /𝑅) ⊆ (dom 𝑅 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436  wss 3897  dom cdm 5614  Rel wrel 5619  [cec 8620   / cqs 8621  ccoss 38223   Disj wdisjALTV 38257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624  df-qs 8628  df-coss 38456  df-cnvrefrel 38572  df-disjALTV 38751
This theorem is referenced by:  disjdmqs  38850
  Copyright terms: Public domain W3C validator