Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdmqscossss Structured version   Visualization version   GIF version

Theorem disjdmqscossss 38805
Description: Lemma for disjdmqseq 38807 via disjdmqs 38806. (Contributed by Peter Mazsa, 16-Sep-2021.)
Assertion
Ref Expression
disjdmqscossss ( Disj 𝑅 → (dom ≀ 𝑅 /𝑅) ⊆ (dom 𝑅 / 𝑅))

Proof of Theorem disjdmqscossss
Dummy variables 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjrel 38732 . . . . . . . 8 ( Disj 𝑅 → Rel 𝑅)
2 releldmqscoss 38662 . . . . . . . . 9 (𝑣 ∈ V → (Rel 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)))
32elv 3484 . . . . . . . 8 (Rel 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))
41, 3syl 17 . . . . . . 7 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))
5 disjlem19 38803 . . . . . . . . . 10 (𝑥 ∈ V → ( Disj 𝑅 → ((𝑢 ∈ dom 𝑅𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅)))
65elv 3484 . . . . . . . . 9 ( Disj 𝑅 → ((𝑢 ∈ dom 𝑅𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅))
76ralrimivv 3199 . . . . . . . 8 ( Disj 𝑅 → ∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅)
8 2r19.29 3138 . . . . . . . . 9 ((∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅))
98ex 412 . . . . . . . 8 (∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅 → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅)))
107, 9syl 17 . . . . . . 7 ( Disj 𝑅 → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅 → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅)))
114, 10sylbid 240 . . . . . 6 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅)))
12 eqtr3 2762 . . . . . . . 8 (([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅) → [𝑢]𝑅 = 𝑣)
1312reximi 3083 . . . . . . 7 (∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅) → ∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣)
1413reximi 3083 . . . . . 6 (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣)
1511, 14syl6 35 . . . . 5 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣))
16 df-rex 3070 . . . . . . . 8 (∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 ↔ ∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣))
17 19.41v 1948 . . . . . . . 8 (∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣))
1816, 17bitri 275 . . . . . . 7 (∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣))
1918simprbi 496 . . . . . 6 (∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 → [𝑢]𝑅 = 𝑣)
2019reximi 3083 . . . . 5 (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 → ∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣)
2115, 20syl6 35 . . . 4 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣))
22 eqcom 2743 . . . . 5 ([𝑢]𝑅 = 𝑣𝑣 = [𝑢]𝑅)
2322rexbii 3093 . . . 4 (∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣 ↔ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅)
2421, 23imbitrdi 251 . . 3 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅))
2524ss2abdv 4065 . 2 ( Disj 𝑅 → {𝑣𝑣 ∈ (dom ≀ 𝑅 /𝑅)} ⊆ {𝑣 ∣ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅})
26 abid1 2877 . 2 (dom ≀ 𝑅 /𝑅) = {𝑣𝑣 ∈ (dom ≀ 𝑅 /𝑅)}
27 df-qs 8752 . 2 (dom 𝑅 / 𝑅) = {𝑣 ∣ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅}
2825, 26, 273sstr4g 4036 1 ( Disj 𝑅 → (dom ≀ 𝑅 /𝑅) ⊆ (dom 𝑅 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  {cab 2713  wral 3060  wrex 3069  Vcvv 3479  wss 3950  dom cdm 5684  Rel wrel 5689  [cec 8744   / cqs 8745  ccoss 38183   Disj wdisjALTV 38217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rmo 3379  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ec 8748  df-qs 8752  df-coss 38413  df-cnvrefrel 38529  df-disjALTV 38707
This theorem is referenced by:  disjdmqs  38806
  Copyright terms: Public domain W3C validator