Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdmqscossss Structured version   Visualization version   GIF version

Theorem disjdmqscossss 38212
Description: Lemma for disjdmqseq 38214 via disjdmqs 38213. (Contributed by Peter Mazsa, 16-Sep-2021.)
Assertion
Ref Expression
disjdmqscossss ( Disj 𝑅 → (dom ≀ 𝑅 /𝑅) ⊆ (dom 𝑅 / 𝑅))

Proof of Theorem disjdmqscossss
Dummy variables 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjrel 38139 . . . . . . . 8 ( Disj 𝑅 → Rel 𝑅)
2 releldmqscoss 38069 . . . . . . . . 9 (𝑣 ∈ V → (Rel 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)))
32elv 3475 . . . . . . . 8 (Rel 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))
41, 3syl 17 . . . . . . 7 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))
5 disjlem19 38210 . . . . . . . . . 10 (𝑥 ∈ V → ( Disj 𝑅 → ((𝑢 ∈ dom 𝑅𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅)))
65elv 3475 . . . . . . . . 9 ( Disj 𝑅 → ((𝑢 ∈ dom 𝑅𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅))
76ralrimivv 3193 . . . . . . . 8 ( Disj 𝑅 → ∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅)
8 2r19.29 3134 . . . . . . . . 9 ((∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅))
98ex 412 . . . . . . . 8 (∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅 → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅)))
107, 9syl 17 . . . . . . 7 ( Disj 𝑅 → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅 → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅)))
114, 10sylbid 239 . . . . . 6 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅)))
12 eqtr3 2753 . . . . . . . 8 (([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅) → [𝑢]𝑅 = 𝑣)
1312reximi 3079 . . . . . . 7 (∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅) → ∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣)
1413reximi 3079 . . . . . 6 (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣)
1511, 14syl6 35 . . . . 5 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣))
16 df-rex 3066 . . . . . . . 8 (∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 ↔ ∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣))
17 19.41v 1946 . . . . . . . 8 (∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣))
1816, 17bitri 275 . . . . . . 7 (∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣))
1918simprbi 496 . . . . . 6 (∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 → [𝑢]𝑅 = 𝑣)
2019reximi 3079 . . . . 5 (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 → ∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣)
2115, 20syl6 35 . . . 4 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣))
22 eqcom 2734 . . . . 5 ([𝑢]𝑅 = 𝑣𝑣 = [𝑢]𝑅)
2322rexbii 3089 . . . 4 (∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣 ↔ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅)
2421, 23imbitrdi 250 . . 3 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅))
2524ss2abdv 4056 . 2 ( Disj 𝑅 → {𝑣𝑣 ∈ (dom ≀ 𝑅 /𝑅)} ⊆ {𝑣 ∣ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅})
26 abid1 2865 . 2 (dom ≀ 𝑅 /𝑅) = {𝑣𝑣 ∈ (dom ≀ 𝑅 /𝑅)}
27 df-qs 8724 . 2 (dom 𝑅 / 𝑅) = {𝑣 ∣ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅}
2825, 26, 273sstr4g 4023 1 ( Disj 𝑅 → (dom ≀ 𝑅 /𝑅) ⊆ (dom 𝑅 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  {cab 2704  wral 3056  wrex 3065  Vcvv 3469  wss 3944  dom cdm 5672  Rel wrel 5677  [cec 8716   / cqs 8717  ccoss 37583   Disj wdisjALTV 37617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rmo 3371  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ec 8720  df-qs 8724  df-coss 37820  df-cnvrefrel 37936  df-disjALTV 38114
This theorem is referenced by:  disjdmqs  38213
  Copyright terms: Public domain W3C validator