Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdmqscossss Structured version   Visualization version   GIF version

Theorem disjdmqscossss 38781
Description: Lemma for disjdmqseq 38783 via disjdmqs 38782. (Contributed by Peter Mazsa, 16-Sep-2021.)
Assertion
Ref Expression
disjdmqscossss ( Disj 𝑅 → (dom ≀ 𝑅 /𝑅) ⊆ (dom 𝑅 / 𝑅))

Proof of Theorem disjdmqscossss
Dummy variables 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjrel 38708 . . . . . . . 8 ( Disj 𝑅 → Rel 𝑅)
2 releldmqscoss 38638 . . . . . . . . 9 (𝑣 ∈ V → (Rel 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅)))
32elv 3441 . . . . . . . 8 (Rel 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))
41, 3syl 17 . . . . . . 7 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅))
5 disjlem19 38779 . . . . . . . . . 10 (𝑥 ∈ V → ( Disj 𝑅 → ((𝑢 ∈ dom 𝑅𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅)))
65elv 3441 . . . . . . . . 9 ( Disj 𝑅 → ((𝑢 ∈ dom 𝑅𝑥 ∈ [𝑢]𝑅) → [𝑢]𝑅 = [𝑥] ≀ 𝑅))
76ralrimivv 3170 . . . . . . . 8 ( Disj 𝑅 → ∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅)
8 2r19.29 3115 . . . . . . . . 9 ((∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 ∧ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅))
98ex 412 . . . . . . . 8 (∀𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = [𝑥] ≀ 𝑅 → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅 → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅)))
107, 9syl 17 . . . . . . 7 ( Disj 𝑅 → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝑣 = [𝑥] ≀ 𝑅 → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅)))
114, 10sylbid 240 . . . . . 6 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅)))
12 eqtr3 2751 . . . . . . . 8 (([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅) → [𝑢]𝑅 = 𝑣)
1312reximi 3067 . . . . . . 7 (∃𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅) → ∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣)
1413reximi 3067 . . . . . 6 (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅([𝑢]𝑅 = [𝑥] ≀ 𝑅𝑣 = [𝑥] ≀ 𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣)
1511, 14syl6 35 . . . . 5 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣))
16 df-rex 3054 . . . . . . . 8 (∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 ↔ ∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣))
17 19.41v 1949 . . . . . . . 8 (∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣))
1816, 17bitri 275 . . . . . . 7 (∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ [𝑢]𝑅 = 𝑣))
1918simprbi 496 . . . . . 6 (∃𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 → [𝑢]𝑅 = 𝑣)
2019reximi 3067 . . . . 5 (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅[𝑢]𝑅 = 𝑣 → ∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣)
2115, 20syl6 35 . . . 4 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣))
22 eqcom 2736 . . . . 5 ([𝑢]𝑅 = 𝑣𝑣 = [𝑢]𝑅)
2322rexbii 3076 . . . 4 (∃𝑢 ∈ dom 𝑅[𝑢]𝑅 = 𝑣 ↔ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅)
2421, 23imbitrdi 251 . . 3 ( Disj 𝑅 → (𝑣 ∈ (dom ≀ 𝑅 /𝑅) → ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅))
2524ss2abdv 4018 . 2 ( Disj 𝑅 → {𝑣𝑣 ∈ (dom ≀ 𝑅 /𝑅)} ⊆ {𝑣 ∣ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅})
26 abid1 2864 . 2 (dom ≀ 𝑅 /𝑅) = {𝑣𝑣 ∈ (dom ≀ 𝑅 /𝑅)}
27 df-qs 8631 . 2 (dom 𝑅 / 𝑅) = {𝑣 ∣ ∃𝑢 ∈ dom 𝑅 𝑣 = [𝑢]𝑅}
2825, 26, 273sstr4g 3989 1 ( Disj 𝑅 → (dom ≀ 𝑅 /𝑅) ⊆ (dom 𝑅 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3436  wss 3903  dom cdm 5619  Rel wrel 5624  [cec 8623   / cqs 8624  ccoss 38155   Disj wdisjALTV 38189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rmo 3343  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8627  df-qs 8631  df-coss 38388  df-cnvrefrel 38504  df-disjALTV 38683
This theorem is referenced by:  disjdmqs  38782
  Copyright terms: Public domain W3C validator