Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjss Structured version   Visualization version   GIF version

Theorem disjss 38723
Description: Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
Assertion
Ref Expression
disjss (𝐴𝐵 → ( Disj 𝐵 → Disj 𝐴))

Proof of Theorem disjss
StepHypRef Expression
1 cnvss 5836 . . . 4 (𝐴𝐵𝐴𝐵)
2 funALTVss 38691 . . . 4 (𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
31, 2syl 17 . . 3 (𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
4 relss 5744 . . 3 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
53, 4anim12d 609 . 2 (𝐴𝐵 → (( FunALTV 𝐵 ∧ Rel 𝐵) → ( FunALTV 𝐴 ∧ Rel 𝐴)))
6 dfdisjALTV 38705 . 2 ( Disj 𝐵 ↔ ( FunALTV 𝐵 ∧ Rel 𝐵))
7 dfdisjALTV 38705 . 2 ( Disj 𝐴 ↔ ( FunALTV 𝐴 ∧ Rel 𝐴))
85, 6, 73imtr4g 296 1 (𝐴𝐵 → ( Disj 𝐵 → Disj 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3914  ccnv 5637  Rel wrel 5643   FunALTV wfunALTV 38200   Disj wdisjALTV 38203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-coss 38402  df-cnvrefrel 38518  df-funALTV 38674  df-disjALTV 38697
This theorem is referenced by:  disjssi  38724  disjssd  38725
  Copyright terms: Public domain W3C validator