Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjss Structured version   Visualization version   GIF version

Theorem disjss 38777
Description: Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
Assertion
Ref Expression
disjss (𝐴𝐵 → ( Disj 𝐵 → Disj 𝐴))

Proof of Theorem disjss
StepHypRef Expression
1 cnvss 5811 . . . 4 (𝐴𝐵𝐴𝐵)
2 funALTVss 38745 . . . 4 (𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
31, 2syl 17 . . 3 (𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
4 relss 5721 . . 3 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
53, 4anim12d 609 . 2 (𝐴𝐵 → (( FunALTV 𝐵 ∧ Rel 𝐵) → ( FunALTV 𝐴 ∧ Rel 𝐴)))
6 dfdisjALTV 38759 . 2 ( Disj 𝐵 ↔ ( FunALTV 𝐵 ∧ Rel 𝐵))
7 dfdisjALTV 38759 . 2 ( Disj 𝐴 ↔ ( FunALTV 𝐴 ∧ Rel 𝐴))
85, 6, 73imtr4g 296 1 (𝐴𝐵 → ( Disj 𝐵 → Disj 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3897  ccnv 5613  Rel wrel 5619   FunALTV wfunALTV 38254   Disj wdisjALTV 38257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-coss 38456  df-cnvrefrel 38572  df-funALTV 38728  df-disjALTV 38751
This theorem is referenced by:  disjssi  38778  disjssd  38779
  Copyright terms: Public domain W3C validator