| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjss | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjss | ⊢ (𝐴 ⊆ 𝐵 → ( Disj 𝐵 → Disj 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5826 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | funALTVss 38664 | . . . 4 ⊢ (◡𝐴 ⊆ ◡𝐵 → ( FunALTV ◡𝐵 → FunALTV ◡𝐴)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ( FunALTV ◡𝐵 → FunALTV ◡𝐴)) |
| 4 | relss 5736 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) | |
| 5 | 3, 4 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (( FunALTV ◡𝐵 ∧ Rel 𝐵) → ( FunALTV ◡𝐴 ∧ Rel 𝐴))) |
| 6 | dfdisjALTV 38678 | . 2 ⊢ ( Disj 𝐵 ↔ ( FunALTV ◡𝐵 ∧ Rel 𝐵)) | |
| 7 | dfdisjALTV 38678 | . 2 ⊢ ( Disj 𝐴 ↔ ( FunALTV ◡𝐴 ∧ Rel 𝐴)) | |
| 8 | 5, 6, 7 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → ( Disj 𝐵 → Disj 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3911 ◡ccnv 5630 Rel wrel 5636 FunALTV wfunALTV 38173 Disj wdisjALTV 38176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-coss 38375 df-cnvrefrel 38491 df-funALTV 38647 df-disjALTV 38670 |
| This theorem is referenced by: disjssi 38697 disjssd 38698 |
| Copyright terms: Public domain | W3C validator |