Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjss Structured version   Visualization version   GIF version

Theorem disjss 38727
Description: Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
Assertion
Ref Expression
disjss (𝐴𝐵 → ( Disj 𝐵 → Disj 𝐴))

Proof of Theorem disjss
StepHypRef Expression
1 cnvss 5890 . . . 4 (𝐴𝐵𝐴𝐵)
2 funALTVss 38695 . . . 4 (𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
31, 2syl 17 . . 3 (𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
4 relss 5798 . . 3 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
53, 4anim12d 609 . 2 (𝐴𝐵 → (( FunALTV 𝐵 ∧ Rel 𝐵) → ( FunALTV 𝐴 ∧ Rel 𝐴)))
6 dfdisjALTV 38709 . 2 ( Disj 𝐵 ↔ ( FunALTV 𝐵 ∧ Rel 𝐵))
7 dfdisjALTV 38709 . 2 ( Disj 𝐴 ↔ ( FunALTV 𝐴 ∧ Rel 𝐴))
85, 6, 73imtr4g 296 1 (𝐴𝐵 → ( Disj 𝐵 → Disj 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3966  ccnv 5692  Rel wrel 5698   FunALTV wfunALTV 38207   Disj wdisjALTV 38210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-coss 38407  df-cnvrefrel 38523  df-funALTV 38678  df-disjALTV 38701
This theorem is referenced by:  disjssi  38728  disjssd  38729
  Copyright terms: Public domain W3C validator