| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drnf1v | Structured version Visualization version GIF version | ||
| Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Version of drnf1 2448 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by Mario Carneiro, 4-Oct-2016.) (Revised by BJ, 17-Jun-2019.) Avoid ax-10 2141. (Revised by GG, 18-Nov-2024.) |
| Ref | Expression |
|---|---|
| dral1v.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| drnf1v | ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dral1v.1 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | drex1v 2374 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) |
| 3 | 1 | dral1v 2372 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
| 4 | 2, 3 | imbi12d 344 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (∃𝑦𝜓 → ∀𝑦𝜓))) |
| 5 | df-nf 1784 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 6 | df-nf 1784 | . 2 ⊢ (Ⅎ𝑦𝜓 ↔ (∃𝑦𝜓 → ∀𝑦𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfriotadw 7396 |
| Copyright terms: Public domain | W3C validator |