MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnf1 Structured version   Visualization version   GIF version

Theorem drnf1 2442
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker drnf1v 2370 if possible. (Contributed by Mario Carneiro, 4-Oct-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
dral1.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
drnf1 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓))

Proof of Theorem drnf1
StepHypRef Expression
1 dral1.1 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
21dral1 2438 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
31, 2imbi12d 348 . . 3 (∀𝑥 𝑥 = 𝑦 → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑦𝜓)))
43dral1 2438 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜓 → ∀𝑦𝜓)))
5 nf5 2283 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
6 nf5 2283 . 2 (Ⅎ𝑦𝜓 ↔ ∀𝑦(𝜓 → ∀𝑦𝜓))
74, 5, 63bitr4g 317 1 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1541  wnf 1791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-10 2141  ax-12 2175  ax-13 2371
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ex 1788  df-nf 1792
This theorem is referenced by:  nfald2  2444  drnfc1  2923  drnfc1OLD  2924  wl-nfs1t  35433
  Copyright terms: Public domain W3C validator