MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriotadw Structured version   Visualization version   GIF version

Theorem nfriotadw 7383
Description: Deduction version of nfriota 7388 with a disjoint variable condition, which contrary to nfriotad 7387 does not require ax-13 2365. (Contributed by NM, 18-Feb-2013.) Avoid ax-13 2365. (Revised by GG, 26-Jan-2024.)
Hypotheses
Ref Expression
nfriotadw.1 𝑦𝜑
nfriotadw.2 (𝜑 → Ⅎ𝑥𝜓)
nfriotadw.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfriotadw (𝜑𝑥(𝑦𝐴 𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriotadw
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-riota 7375 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
2 nfriotadw.1 . . . . . 6 𝑦𝜑
3 nfnaew 2137 . . . . . 6 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
42, 3nfan 1894 . . . . 5 𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
5 nfcvd 2892 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
65adantl 480 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝑦)
7 nfriotadw.3 . . . . . . . 8 (𝜑𝑥𝐴)
87adantr 479 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝐴)
96, 8nfeld 2903 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦𝐴)
10 nfriotadw.2 . . . . . . 7 (𝜑 → Ⅎ𝑥𝜓)
1110adantr 479 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
129, 11nfand 1892 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦𝐴𝜓))
134, 12nfiotadw 6504 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥(℩𝑦(𝑦𝐴𝜓)))
1413ex 411 . . 3 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦𝑥(℩𝑦(𝑦𝐴𝜓))))
15 nfiota1 6503 . . . 4 𝑦(℩𝑦(𝑦𝐴𝜓))
16 biidd 261 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → (𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)) ↔ 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓))))
1716drnf1v 2363 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)) ↔ Ⅎ𝑦 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓))))
1817albidv 1915 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∀𝑤𝑥 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)) ↔ ∀𝑤𝑦 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓))))
19 df-nfc 2877 . . . . 5 (𝑥(℩𝑦(𝑦𝐴𝜓)) ↔ ∀𝑤𝑥 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)))
20 df-nfc 2877 . . . . 5 (𝑦(℩𝑦(𝑦𝐴𝜓)) ↔ ∀𝑤𝑦 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)))
2118, 19, 203bitr4g 313 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑥(℩𝑦(𝑦𝐴𝜓)) ↔ 𝑦(℩𝑦(𝑦𝐴𝜓))))
2215, 21mpbiri 257 . . 3 (∀𝑥 𝑥 = 𝑦𝑥(℩𝑦(𝑦𝐴𝜓)))
2314, 22pm2.61d2 181 . 2 (𝜑𝑥(℩𝑦(𝑦𝐴𝜓)))
241, 23nfcxfrd 2890 1 (𝜑𝑥(𝑦𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wal 1531  wnf 1777  wcel 2098  wnfc 2875  cio 6499  crio 7374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-v 3463  df-ss 3961  df-sn 4631  df-uni 4910  df-iota 6501  df-riota 7375
This theorem is referenced by:  nfriota  7388
  Copyright terms: Public domain W3C validator