MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriotadw Structured version   Visualization version   GIF version

Theorem nfriotadw 7396
Description: Deduction version of nfriota 7400 with a disjoint variable condition, which contrary to nfriotad 7399 does not require ax-13 2377. (Contributed by NM, 18-Feb-2013.) Avoid ax-13 2377. (Revised by GG, 26-Jan-2024.)
Hypotheses
Ref Expression
nfriotadw.1 𝑦𝜑
nfriotadw.2 (𝜑 → Ⅎ𝑥𝜓)
nfriotadw.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfriotadw (𝜑𝑥(𝑦𝐴 𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriotadw
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-riota 7388 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
2 nfriotadw.1 . . . . . 6 𝑦𝜑
3 nfnaew 2149 . . . . . 6 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
42, 3nfan 1899 . . . . 5 𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
5 nfcvd 2906 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
65adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝑦)
7 nfriotadw.3 . . . . . . . 8 (𝜑𝑥𝐴)
87adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝐴)
96, 8nfeld 2917 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦𝐴)
10 nfriotadw.2 . . . . . . 7 (𝜑 → Ⅎ𝑥𝜓)
1110adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
129, 11nfand 1897 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦𝐴𝜓))
134, 12nfiotadw 6517 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥(℩𝑦(𝑦𝐴𝜓)))
1413ex 412 . . 3 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦𝑥(℩𝑦(𝑦𝐴𝜓))))
15 nfiota1 6516 . . . 4 𝑦(℩𝑦(𝑦𝐴𝜓))
16 biidd 262 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → (𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)) ↔ 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓))))
1716drnf1v 2375 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)) ↔ Ⅎ𝑦 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓))))
1817albidv 1920 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∀𝑤𝑥 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)) ↔ ∀𝑤𝑦 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓))))
19 df-nfc 2892 . . . . 5 (𝑥(℩𝑦(𝑦𝐴𝜓)) ↔ ∀𝑤𝑥 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)))
20 df-nfc 2892 . . . . 5 (𝑦(℩𝑦(𝑦𝐴𝜓)) ↔ ∀𝑤𝑦 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)))
2118, 19, 203bitr4g 314 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑥(℩𝑦(𝑦𝐴𝜓)) ↔ 𝑦(℩𝑦(𝑦𝐴𝜓))))
2215, 21mpbiri 258 . . 3 (∀𝑥 𝑥 = 𝑦𝑥(℩𝑦(𝑦𝐴𝜓)))
2314, 22pm2.61d2 181 . 2 (𝜑𝑥(℩𝑦(𝑦𝐴𝜓)))
241, 23nfcxfrd 2904 1 (𝜑𝑥(𝑦𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538  wnf 1783  wcel 2108  wnfc 2890  cio 6512  crio 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-v 3482  df-ss 3968  df-sn 4627  df-uni 4908  df-iota 6514  df-riota 7388
This theorem is referenced by:  nfriota  7400
  Copyright terms: Public domain W3C validator