MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriotadw Structured version   Visualization version   GIF version

Theorem nfriotadw 7220
Description: Deduction version of nfriota 7225 with a disjoint variable condition, which contrary to nfriotad 7224 does not require ax-13 2372. (Contributed by NM, 18-Feb-2013.) (Revised by Gino Giotto, 26-Jan-2024.)
Hypotheses
Ref Expression
nfriotadw.1 𝑦𝜑
nfriotadw.2 (𝜑 → Ⅎ𝑥𝜓)
nfriotadw.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfriotadw (𝜑𝑥(𝑦𝐴 𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriotadw
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-riota 7212 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
2 nfriotadw.1 . . . . . 6 𝑦𝜑
3 nfnaew 2147 . . . . . 6 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
42, 3nfan 1903 . . . . 5 𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
5 nfcvd 2907 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
65adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝑦)
7 nfriotadw.3 . . . . . . . 8 (𝜑𝑥𝐴)
87adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝐴)
96, 8nfeld 2917 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦𝐴)
10 nfriotadw.2 . . . . . . 7 (𝜑 → Ⅎ𝑥𝜓)
1110adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
129, 11nfand 1901 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦𝐴𝜓))
134, 12nfiotadw 6379 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥(℩𝑦(𝑦𝐴𝜓)))
1413ex 412 . . 3 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦𝑥(℩𝑦(𝑦𝐴𝜓))))
15 nfiota1 6378 . . . 4 𝑦(℩𝑦(𝑦𝐴𝜓))
16 biidd 261 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → (𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)) ↔ 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓))))
1716drnf1v 2370 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)) ↔ Ⅎ𝑦 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓))))
1817albidv 1924 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∀𝑤𝑥 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)) ↔ ∀𝑤𝑦 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓))))
19 df-nfc 2888 . . . . 5 (𝑥(℩𝑦(𝑦𝐴𝜓)) ↔ ∀𝑤𝑥 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)))
20 df-nfc 2888 . . . . 5 (𝑦(℩𝑦(𝑦𝐴𝜓)) ↔ ∀𝑤𝑦 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)))
2118, 19, 203bitr4g 313 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑥(℩𝑦(𝑦𝐴𝜓)) ↔ 𝑦(℩𝑦(𝑦𝐴𝜓))))
2215, 21mpbiri 257 . . 3 (∀𝑥 𝑥 = 𝑦𝑥(℩𝑦(𝑦𝐴𝜓)))
2314, 22pm2.61d2 181 . 2 (𝜑𝑥(℩𝑦(𝑦𝐴𝜓)))
241, 23nfcxfrd 2905 1 (𝜑𝑥(𝑦𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537  wnf 1787  wcel 2108  wnfc 2886  cio 6374  crio 7211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-sn 4559  df-uni 4837  df-iota 6376  df-riota 7212
This theorem is referenced by:  nfriota  7225
  Copyright terms: Public domain W3C validator