Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriotadw Structured version   Visualization version   GIF version

 Description: Deduction version of nfriota 7115 with a disjoint variable condition, which contrary to nfriotad 7114 does not require ax-13 2379. (Contributed by NM, 18-Feb-2013.) (Revised by Gino Giotto, 26-Jan-2024.)
Hypotheses
Ref Expression
Assertion
Ref Expression
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-riota 7103 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
2 nfriotadw.1 . . . . . 6 𝑦𝜑
3 nfnaew 2150 . . . . . 6 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
42, 3nfan 1900 . . . . 5 𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
5 nfcvd 2956 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
65adantl 485 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝑦)
7 nfriotadw.3 . . . . . . . 8 (𝜑𝑥𝐴)
87adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝐴)
96, 8nfeld 2966 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦𝐴)
10 nfriotadw.2 . . . . . . 7 (𝜑 → Ⅎ𝑥𝜓)
1110adantr 484 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
129, 11nfand 1898 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦𝐴𝜓))
134, 12nfiotadw 6294 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥(℩𝑦(𝑦𝐴𝜓)))
1413ex 416 . . 3 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦𝑥(℩𝑦(𝑦𝐴𝜓))))
15 nfiota1 6293 . . . 4 𝑦(℩𝑦(𝑦𝐴𝜓))
16 biidd 265 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → (𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)) ↔ 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓))))
1716drnf1v 2378 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)) ↔ Ⅎ𝑦 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓))))
1817albidv 1921 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∀𝑤𝑥 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)) ↔ ∀𝑤𝑦 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓))))
19 df-nfc 2938 . . . . 5 (𝑥(℩𝑦(𝑦𝐴𝜓)) ↔ ∀𝑤𝑥 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)))
20 df-nfc 2938 . . . . 5 (𝑦(℩𝑦(𝑦𝐴𝜓)) ↔ ∀𝑤𝑦 𝑤 ∈ (℩𝑦(𝑦𝐴𝜓)))
2118, 19, 203bitr4g 317 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑥(℩𝑦(𝑦𝐴𝜓)) ↔ 𝑦(℩𝑦(𝑦𝐴𝜓))))
2215, 21mpbiri 261 . . 3 (∀𝑥 𝑥 = 𝑦𝑥(℩𝑦(𝑦𝐴𝜓)))
2314, 22pm2.61d2 184 . 2 (𝜑𝑥(℩𝑦(𝑦𝐴𝜓)))
241, 23nfcxfrd 2954 1 (𝜑𝑥(𝑦𝐴 𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399  ∀wal 1536  Ⅎwnf 1785   ∈ wcel 2111  Ⅎwnfc 2936  ℩cio 6289  ℩crio 7102 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3444  df-in 3890  df-ss 3900  df-sn 4529  df-uni 4805  df-iota 6291  df-riota 7103 This theorem is referenced by:  nfriota  7115
 Copyright terms: Public domain W3C validator