Step | Hyp | Ref
| Expression |
1 | | df-riota 7212 |
. 2
⊢
(℩𝑦
∈ 𝐴 𝜓) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
2 | | nfriotadw.1 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
3 | | nfnaew 2147 |
. . . . . 6
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑦 |
4 | 2, 3 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) |
5 | | nfcvd 2907 |
. . . . . . . 8
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
6 | 5 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝑦) |
7 | | nfriotadw.3 |
. . . . . . . 8
⊢ (𝜑 → Ⅎ𝑥𝐴) |
8 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐴) |
9 | 6, 8 | nfeld 2917 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 ∈ 𝐴) |
10 | | nfriotadw.2 |
. . . . . . 7
⊢ (𝜑 → Ⅎ𝑥𝜓) |
11 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
12 | 9, 11 | nfand 1901 |
. . . . 5
⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) |
13 | 4, 12 | nfiotadw 6379 |
. . . 4
⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
14 | 13 | ex 412 |
. . 3
⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)))) |
15 | | nfiota1 6378 |
. . . 4
⊢
Ⅎ𝑦(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
16 | | biidd 261 |
. . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑤 ∈ (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) ↔ 𝑤 ∈ (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)))) |
17 | 16 | drnf1v 2370 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤 ∈ (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) ↔ Ⅎ𝑦 𝑤 ∈ (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)))) |
18 | 17 | albidv 1924 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑤Ⅎ𝑥 𝑤 ∈ (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) ↔ ∀𝑤Ⅎ𝑦 𝑤 ∈ (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)))) |
19 | | df-nfc 2888 |
. . . . 5
⊢
(Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) ↔ ∀𝑤Ⅎ𝑥 𝑤 ∈ (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
20 | | df-nfc 2888 |
. . . . 5
⊢
(Ⅎ𝑦(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) ↔ ∀𝑤Ⅎ𝑦 𝑤 ∈ (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
21 | 18, 19, 20 | 3bitr4g 313 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) ↔ Ⅎ𝑦(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)))) |
22 | 15, 21 | mpbiri 257 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
23 | 14, 22 | pm2.61d2 181 |
. 2
⊢ (𝜑 → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
24 | 1, 23 | nfcxfrd 2905 |
1
⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) |