MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnf1vOLD Structured version   Visualization version   GIF version

Theorem drnf1vOLD 2371
Description: Obsolete version of drnf1v 2370 as of 18-Nov-2024. (Contributed by Mario Carneiro, 4-Oct-2016.) (Revised by BJ, 17-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dral1v.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
drnf1vOLD (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem drnf1vOLD
StepHypRef Expression
1 dral1v.1 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
21dral1v 2367 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
31, 2imbi12d 345 . . 3 (∀𝑥 𝑥 = 𝑦 → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑦𝜓)))
43dral1v 2367 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜓 → ∀𝑦𝜓)))
5 nf5 2279 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
6 nf5 2279 . 2 (Ⅎ𝑦𝜓 ↔ ∀𝑦(𝜓 → ∀𝑦𝜓))
74, 5, 63bitr4g 314 1 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator