Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drnf1vOLD | Structured version Visualization version GIF version |
Description: Obsolete version of drnf1v 2370 as of 18-Nov-2024. (Contributed by Mario Carneiro, 4-Oct-2016.) (Revised by BJ, 17-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dral1v.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
drnf1vOLD | ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dral1v.1 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | dral1v 2367 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
3 | 1, 2 | imbi12d 344 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑦𝜓))) |
4 | 3 | dral1v 2367 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜓 → ∀𝑦𝜓))) |
5 | nf5 2282 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
6 | nf5 2282 | . 2 ⊢ (Ⅎ𝑦𝜓 ↔ ∀𝑦(𝜓 → ∀𝑦𝜓)) | |
7 | 4, 5, 6 | 3bitr4g 313 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |