![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nf5 | Structured version Visualization version GIF version |
Description: Alternate definition of df-nf 1785. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1785 changed. (Revised by Wolf Lammen, 11-Sep-2021.) |
Ref | Expression |
---|---|
nf5 | ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1785 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
2 | nfa1 2147 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
3 | 2 | 19.23 2203 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
4 | 1, 3 | bitr4i 278 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 ∃wex 1780 Ⅎwnf 1784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1781 df-nf 1785 |
This theorem is referenced by: drnf1vOLD 2369 drnf1 2441 axie2 2697 xfree 31965 bj-nfdt0 35877 bj-nfalt 35893 bj-nfext 35894 bj-nfs1t 35972 bj-sbnf 36023 wl-sbnf1 36724 hbexg 43620 |
Copyright terms: Public domain | W3C validator |