MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf5 Structured version   Visualization version   GIF version

Theorem nf5 2258
Description: Alternate definition of df-nf 1770. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1770 changed. (Revised by Wolf Lammen, 11-Sep-2021.)
Assertion
Ref Expression
nf5 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))

Proof of Theorem nf5
StepHypRef Expression
1 df-nf 1770 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfa1 2123 . . 3 𝑥𝑥𝜑
3219.23 2178 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
41, 3bitr4i 279 1 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wal 1523  wex 1765  wnf 1769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-10 2114  ax-12 2143
This theorem depends on definitions:  df-bi 208  df-or 843  df-ex 1766  df-nf 1770
This theorem is referenced by:  drnf1  2424  axie2  2764  xfree  29908  bj-nfdt0  33633  bj-nfalt  33649  bj-nfext  33650  bj-nfs1t  33662  bj-drnf1v  33687  bj-sbnf  33740  wl-sbnf1  34343  hbexg  40450
  Copyright terms: Public domain W3C validator