MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf5 Structured version   Visualization version   GIF version

Theorem nf5 2282
Description: Alternate definition of df-nf 1788. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1788 changed. (Revised by Wolf Lammen, 11-Sep-2021.)
Assertion
Ref Expression
nf5 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))

Proof of Theorem nf5
StepHypRef Expression
1 df-nf 1788 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfa1 2150 . . 3 𝑥𝑥𝜑
3219.23 2207 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
41, 3bitr4i 277 1 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1784  df-nf 1788
This theorem is referenced by:  drnf1vOLD  2371  drnf1  2443  axie2  2704  xfree  30707  bj-nfdt0  34804  bj-nfalt  34820  bj-nfext  34821  bj-nfs1t  34899  bj-sbnf  34951  wl-sbnf1  35637  hbexg  42065
  Copyright terms: Public domain W3C validator