![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nf5 | Structured version Visualization version GIF version |
Description: Alternate definition of df-nf 1782. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1782 changed. (Revised by Wolf Lammen, 11-Sep-2021.) |
Ref | Expression |
---|---|
nf5 | ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1782 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
2 | nfa1 2152 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
3 | 2 | 19.23 2212 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
4 | 1, 3 | bitr4i 278 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: sbnfOLD 2317 drnf1vOLD 2379 drnf1 2451 axie2 2706 xfree 32476 bj-nfdt0 36661 bj-nfalt 36677 bj-nfext 36678 bj-nfs1t 36756 wl-sbnf1 37509 hbexg 44527 |
Copyright terms: Public domain | W3C validator |