Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nf5 | Structured version Visualization version GIF version |
Description: Alternate definition of df-nf 1788. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1788 changed. (Revised by Wolf Lammen, 11-Sep-2021.) |
Ref | Expression |
---|---|
nf5 | ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1788 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
2 | nfa1 2150 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
3 | 2 | 19.23 2207 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
4 | 1, 3 | bitr4i 277 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: drnf1vOLD 2371 drnf1 2443 axie2 2704 xfree 30707 bj-nfdt0 34804 bj-nfalt 34820 bj-nfext 34821 bj-nfs1t 34899 bj-sbnf 34951 wl-sbnf1 35637 hbexg 42065 |
Copyright terms: Public domain | W3C validator |