![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nf5 | Structured version Visualization version GIF version |
Description: Alternate definition of df-nf 1770. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1770 changed. (Revised by Wolf Lammen, 11-Sep-2021.) |
Ref | Expression |
---|---|
nf5 | ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1770 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
2 | nfa1 2123 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
3 | 2 | 19.23 2178 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
4 | 1, 3 | bitr4i 279 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∀wal 1523 ∃wex 1765 Ⅎwnf 1769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-10 2114 ax-12 2143 |
This theorem depends on definitions: df-bi 208 df-or 843 df-ex 1766 df-nf 1770 |
This theorem is referenced by: drnf1 2424 axie2 2764 xfree 29908 bj-nfdt0 33633 bj-nfalt 33649 bj-nfext 33650 bj-nfs1t 33662 bj-drnf1v 33687 bj-sbnf 33740 wl-sbnf1 34343 hbexg 40450 |
Copyright terms: Public domain | W3C validator |