MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf5 Structured version   Visualization version   GIF version

Theorem nf5 2278
Description: Alternate definition of df-nf 1785. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1785 changed. (Revised by Wolf Lammen, 11-Sep-2021.)
Assertion
Ref Expression
nf5 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))

Proof of Theorem nf5
StepHypRef Expression
1 df-nf 1785 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfa1 2147 . . 3 𝑥𝑥𝜑
3219.23 2203 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
41, 3bitr4i 277 1 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1538  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1781  df-nf 1785
This theorem is referenced by:  drnf1vOLD  2370  drnf1  2442  axie2  2703  xfree  30942  bj-nfdt0  34951  bj-nfalt  34967  bj-nfext  34968  bj-nfs1t  35046  bj-sbnf  35097  wl-sbnf1  35782  hbexg  42410
  Copyright terms: Public domain W3C validator