MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf5 Structured version   Visualization version   GIF version

Theorem nf5 2281
Description: Alternate definition of df-nf 1781. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1781 changed. (Revised by Wolf Lammen, 11-Sep-2021.)
Assertion
Ref Expression
nf5 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))

Proof of Theorem nf5
StepHypRef Expression
1 df-nf 1781 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfa1 2149 . . 3 𝑥𝑥𝜑
3219.23 2209 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
41, 3bitr4i 278 1 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wex 1776  wnf 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-10 2139  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1777  df-nf 1781
This theorem is referenced by:  sbnfOLD  2312  drnf1vOLD  2374  drnf1  2446  axie2  2701  xfree  32473  bj-nfdt0  36678  bj-nfalt  36694  bj-nfext  36695  bj-nfs1t  36773  wl-sbnf1  37536  hbexg  44554
  Copyright terms: Public domain W3C validator