MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dtrucor2 Structured version   Visualization version   GIF version

Theorem dtrucor2 5297
Description: The theorem form of the deduction dtrucor 5296 leads to a contradiction, as mentioned in the "Wrong!" example at mmdeduction.html#bad 5296. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 20-Oct-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
dtrucor2.1 (𝑥 = 𝑦𝑥𝑦)
Assertion
Ref Expression
dtrucor2 (𝜑 ∧ ¬ 𝜑)

Proof of Theorem dtrucor2
StepHypRef Expression
1 ax6e 2383 . 2 𝑥 𝑥 = 𝑦
2 dtrucor2.1 . . . . 5 (𝑥 = 𝑦𝑥𝑦)
32necon2bi 2974 . . . 4 (𝑥 = 𝑦 → ¬ 𝑥 = 𝑦)
4 pm2.01 188 . . . 4 ((𝑥 = 𝑦 → ¬ 𝑥 = 𝑦) → ¬ 𝑥 = 𝑦)
53, 4ax-mp 5 . . 3 ¬ 𝑥 = 𝑦
65nex 1803 . 2 ¬ ∃𝑥 𝑥 = 𝑦
71, 6pm2.24ii 120 1 (𝜑 ∧ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wex 1782  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-ne 2944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator