| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nex | Structured version Visualization version GIF version | ||
| Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| nex.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| nex | ⊢ ¬ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1781 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
| 3 | 1, 2 | mpgbi 1798 | 1 ⊢ ¬ ∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: ru 3754 ruOLD 3755 noel 4304 axnulALT 5262 notzfaus 5321 dtrucor2 5330 opelopabsb 5493 0nelopab 5530 0nelxp 5675 0xp 5740 dm0 5887 cnv0 6116 co02 6236 dffv3 6857 mpo0 7477 canth2 9100 snnen2o 9191 1sdom2dom 9201 brdom3 10488 ruc 16218 join0 18371 meet0 18372 0g0 18598 ustn0 24115 bnj1523 35068 linedegen 36138 nexntru 36399 nexfal 36400 unqsym1 36420 bj-dtrucor2v 36812 bj-ru1 36938 bj-0nelsngl 36966 bj-ccinftydisj 37208 disjALTV0 38753 dtrucor3 48791 |
| Copyright terms: Public domain | W3C validator |