Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nex | Structured version Visualization version GIF version |
Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
nex.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
nex | ⊢ ¬ ∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex 1782 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
3 | 1, 2 | mpgbi 1799 | 1 ⊢ ¬ ∃𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 |
This theorem depends on definitions: df-bi 206 df-ex 1781 |
This theorem is referenced by: ru 3726 noel 4277 noelOLD 4278 axnulALT 5248 notzfaus 5305 dtrucor2 5315 opelopabsb 5474 0nelopab 5511 0nelxp 5654 0xp 5716 dm0 5862 cnv0 6079 co02 6198 dffv3 6821 mpo0 7422 canth2 8995 snnen2o 9102 1sdom2dom 9112 brdom3 10385 ruc 16051 join0 18220 meet0 18221 0g0 18445 ustn0 23478 bnj1523 33350 linedegen 34541 nexntru 34689 nexfal 34690 unqsym1 34710 bj-dtrucor2v 35095 bj-ru1 35227 bj-0nelsngl 35255 bj-ccinftydisj 35497 disjALTV0 37029 dtrucor3 46504 |
Copyright terms: Public domain | W3C validator |