Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nex | Structured version Visualization version GIF version |
Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
nex.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
nex | ⊢ ¬ ∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex 1781 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
3 | 1, 2 | mpgbi 1798 | 1 ⊢ ¬ ∃𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
This theorem depends on definitions: df-bi 206 df-ex 1780 |
This theorem is referenced by: ru 3720 noel 4270 noelOLD 4271 axnulALT 5237 notzfaus 5294 dtrucor2 5304 opelopabsb 5456 0nelopab 5493 0nelxp 5634 0xp 5696 dm0 5842 cnv0 6059 co02 6178 dffv3 6800 mpo0 7392 canth2 8955 snnen2o 9058 1sdom2dom 9068 brdom3 10334 ruc 16001 join0 18172 meet0 18173 0g0 18397 ustn0 23421 bnj1523 33100 linedegen 34494 nexntru 34642 nexfal 34643 unqsym1 34663 amosym1 34664 subsym1 34665 bj-dtrucor2v 35048 bj-ru1 35180 bj-0nelsngl 35209 bj-ccinftydisj 35432 disjALTV0 36968 dtrucor3 46388 |
Copyright terms: Public domain | W3C validator |