| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nex | Structured version Visualization version GIF version | ||
| Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| nex.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| nex | ⊢ ¬ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1782 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
| 3 | 1, 2 | mpgbi 1799 | 1 ⊢ ¬ ∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: ru 3735 ruOLD 3736 noel 4287 uni0 4888 axnulALT 5246 notzfaus 5305 dtrucor2 5314 opelopabsb 5475 0nelopab 5510 0nelxp 5655 0xp 5720 xp0 5721 dm0 5866 cnv0 6094 cnv0OLD 6095 co02 6216 dffv3 6827 mpo0 7440 canth2 9054 snnen2o 9140 1sdom2dom 9149 brdom3 10430 ruc 16159 join0 18317 meet0 18318 0g0 18580 ustn0 24156 bnj1523 35155 linedegen 36259 nexntru 36520 nexfal 36521 unqsym1 36541 bj-dtrucor2v 36934 bj-ru1 37060 bj-0nelsngl 37088 bj-ccinftydisj 37330 disjALTV0 38925 dtrucor3 48960 |
| Copyright terms: Public domain | W3C validator |