| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nex | Structured version Visualization version GIF version | ||
| Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| nex.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| nex | ⊢ ¬ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1781 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
| 3 | 1, 2 | mpgbi 1798 | 1 ⊢ ¬ ∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: ru 3748 ruOLD 3749 noel 4297 axnulALT 5254 notzfaus 5313 dtrucor2 5322 opelopabsb 5485 0nelopab 5520 0nelxp 5665 0xp 5729 dm0 5874 cnv0 6101 co02 6221 dffv3 6836 mpo0 7454 canth2 9071 snnen2o 9161 1sdom2dom 9170 brdom3 10457 ruc 16187 join0 18340 meet0 18341 0g0 18567 ustn0 24084 bnj1523 35034 linedegen 36104 nexntru 36365 nexfal 36366 unqsym1 36386 bj-dtrucor2v 36778 bj-ru1 36904 bj-0nelsngl 36932 bj-ccinftydisj 37174 disjALTV0 38719 dtrucor3 48760 |
| Copyright terms: Public domain | W3C validator |