| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nex | Structured version Visualization version GIF version | ||
| Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| nex.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| nex | ⊢ ¬ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1780 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
| 3 | 1, 2 | mpgbi 1797 | 1 ⊢ ¬ ∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: ru 3761 ruOLD 3762 noel 4311 axnulALT 5272 notzfaus 5331 dtrucor2 5340 opelopabsb 5503 0nelopab 5540 0nelxp 5686 0xp 5751 dm0 5898 cnv0 6127 co02 6247 dffv3 6869 mpo0 7487 canth2 9139 snnen2o 9240 1sdom2dom 9250 brdom3 10535 ruc 16248 join0 18402 meet0 18403 0g0 18629 ustn0 24146 bnj1523 35031 linedegen 36090 nexntru 36351 nexfal 36352 unqsym1 36372 bj-dtrucor2v 36764 bj-ru1 36890 bj-0nelsngl 36918 bj-ccinftydisj 37160 disjALTV0 38701 dtrucor3 48672 |
| Copyright terms: Public domain | W3C validator |