| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nex | Structured version Visualization version GIF version | ||
| Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| nex.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| nex | ⊢ ¬ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1781 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
| 3 | 1, 2 | mpgbi 1798 | 1 ⊢ ¬ ∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: ru 3763 ruOLD 3764 noel 4313 axnulALT 5274 notzfaus 5333 dtrucor2 5342 opelopabsb 5505 0nelopab 5542 0nelxp 5688 0xp 5753 dm0 5900 cnv0 6129 co02 6249 dffv3 6871 mpo0 7490 canth2 9142 snnen2o 9243 1sdom2dom 9253 brdom3 10540 ruc 16259 join0 18413 meet0 18414 0g0 18640 ustn0 24157 bnj1523 35048 linedegen 36107 nexntru 36368 nexfal 36369 unqsym1 36389 bj-dtrucor2v 36781 bj-ru1 36907 bj-0nelsngl 36935 bj-ccinftydisj 37177 disjALTV0 38718 dtrucor3 48726 |
| Copyright terms: Public domain | W3C validator |