![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nex | Structured version Visualization version GIF version |
Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
nex.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
nex | ⊢ ¬ ∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex 1777 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
3 | 1, 2 | mpgbi 1794 | 1 ⊢ ¬ ∃𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 |
This theorem depends on definitions: df-bi 207 df-ex 1776 |
This theorem is referenced by: ru 3788 ruOLD 3789 noel 4343 axnulALT 5309 notzfaus 5368 dtrucor2 5377 opelopabsb 5539 0nelopab 5576 0nelxp 5722 0xp 5786 dm0 5933 cnv0 6162 co02 6281 dffv3 6902 mpo0 7517 canth2 9168 snnen2o 9270 1sdom2dom 9280 brdom3 10565 ruc 16275 join0 18462 meet0 18463 0g0 18689 ustn0 24244 bnj1523 35063 linedegen 36124 nexntru 36386 nexfal 36387 unqsym1 36407 bj-dtrucor2v 36799 bj-ru1 36925 bj-0nelsngl 36953 bj-ccinftydisj 37195 disjALTV0 38735 dtrucor3 48647 |
Copyright terms: Public domain | W3C validator |