| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nex | Structured version Visualization version GIF version | ||
| Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| nex.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| nex | ⊢ ¬ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1781 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
| 3 | 1, 2 | mpgbi 1798 | 1 ⊢ ¬ ∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: ru 3742 ruOLD 3743 noel 4291 axnulALT 5246 notzfaus 5305 dtrucor2 5314 opelopabsb 5477 0nelopab 5512 0nelxp 5657 0xp 5722 dm0 5867 cnv0 6093 co02 6213 dffv3 6822 mpo0 7438 canth2 9054 snnen2o 9144 1sdom2dom 9153 brdom3 10441 ruc 16170 join0 18327 meet0 18328 0g0 18556 ustn0 24124 bnj1523 35040 linedegen 36119 nexntru 36380 nexfal 36381 unqsym1 36401 bj-dtrucor2v 36793 bj-ru1 36919 bj-0nelsngl 36947 bj-ccinftydisj 37189 disjALTV0 38734 dtrucor3 48787 |
| Copyright terms: Public domain | W3C validator |