![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nex | Structured version Visualization version GIF version |
Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
nex.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
nex | ⊢ ¬ ∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex 1779 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
3 | 1, 2 | mpgbi 1796 | 1 ⊢ ¬ ∃𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: ru 3802 ruOLD 3803 noel 4360 noelOLD 4361 axnulALT 5322 notzfaus 5381 dtrucor2 5390 opelopabsb 5549 0nelopab 5586 0nelxp 5734 0xp 5798 dm0 5945 cnv0 6172 co02 6291 dffv3 6916 mpo0 7535 canth2 9196 snnen2o 9300 1sdom2dom 9310 brdom3 10597 ruc 16291 join0 18475 meet0 18476 0g0 18702 ustn0 24250 bnj1523 35047 linedegen 36107 nexntru 36370 nexfal 36371 unqsym1 36391 bj-dtrucor2v 36783 bj-ru1 36909 bj-0nelsngl 36937 bj-ccinftydisj 37179 disjALTV0 38710 dtrucor3 48532 |
Copyright terms: Public domain | W3C validator |