| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nex | Structured version Visualization version GIF version | ||
| Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| nex.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| nex | ⊢ ¬ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1782 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
| 3 | 1, 2 | mpgbi 1799 | 1 ⊢ ¬ ∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: ru 3739 ruOLD 3740 noel 4288 axnulALT 5242 notzfaus 5301 dtrucor2 5310 opelopabsb 5470 0nelopab 5505 0nelxp 5650 0xp 5715 dm0 5860 cnv0 6087 co02 6208 dffv3 6818 mpo0 7431 canth2 9043 snnen2o 9129 1sdom2dom 9138 brdom3 10419 ruc 16152 join0 18309 meet0 18310 0g0 18572 ustn0 24137 bnj1523 35081 linedegen 36183 nexntru 36444 nexfal 36445 unqsym1 36465 bj-dtrucor2v 36857 bj-ru1 36983 bj-0nelsngl 37011 bj-ccinftydisj 37253 disjALTV0 38798 dtrucor3 48836 |
| Copyright terms: Public domain | W3C validator |