| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nex | Structured version Visualization version GIF version | ||
| Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| nex.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| nex | ⊢ ¬ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1781 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
| 3 | 1, 2 | mpgbi 1798 | 1 ⊢ ¬ ∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: ru 3751 ruOLD 3752 noel 4301 axnulALT 5259 notzfaus 5318 dtrucor2 5327 opelopabsb 5490 0nelopab 5527 0nelxp 5672 0xp 5737 dm0 5884 cnv0 6113 co02 6233 dffv3 6854 mpo0 7474 canth2 9094 snnen2o 9184 1sdom2dom 9194 brdom3 10481 ruc 16211 join0 18364 meet0 18365 0g0 18591 ustn0 24108 bnj1523 35061 linedegen 36131 nexntru 36392 nexfal 36393 unqsym1 36413 bj-dtrucor2v 36805 bj-ru1 36931 bj-0nelsngl 36959 bj-ccinftydisj 37201 disjALTV0 38746 dtrucor3 48787 |
| Copyright terms: Public domain | W3C validator |