MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdemo1 Structured version   Visualization version   GIF version

Theorem dvdemo1 5355
Description: Demonstration of a theorem that requires the setvar variables 𝑥 and 𝑦 to be disjoint (but without any other disjointness conditions, and in particular, none on 𝑧).

That theorem bundles the theorems (𝑥(𝑥 = 𝑦𝑧𝑥) with 𝑥, 𝑦, 𝑧 disjoint), often called its "principal instance", and the two "degenerate instances" (𝑥(𝑥 = 𝑦𝑥𝑥) with 𝑥, 𝑦 disjoint) and (𝑥(𝑥 = 𝑦𝑦𝑥) with 𝑥, 𝑦 disjoint).

Compare with dvdemo2 5356, which has the same principal instance and one common degenerate instance but crucially differs in the other degenerate instance.

See https://us.metamath.org/mpeuni/mmset.html#distinct 5356 for details on the "disjoint variable" mechanism. (The verb "bundle" to express this phenomenon was introduced by Raph Levien.)

Note that dvdemo1 5355 is partially bundled, in that the pairs of setvar variables 𝑥, 𝑧 and 𝑦, 𝑧 need not be disjoint, and in spite of that, its proof does not require ax-11 2156 nor ax-13 2375. (Contributed by NM, 1-Dec-2006.) (Revised by BJ, 13-Jan-2024.)

Assertion
Ref Expression
dvdemo1 𝑥(𝑥 = 𝑦𝑧𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem dvdemo1
StepHypRef Expression
1 dtruALT2 5352 . . 3 ¬ ∀𝑥 𝑥 = 𝑦
2 exnal 1826 . . 3 (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
31, 2mpbir 231 . 2 𝑥 ¬ 𝑥 = 𝑦
4 pm2.21 123 . 2 𝑥 = 𝑦 → (𝑥 = 𝑦𝑧𝑥))
53, 4eximii 1836 1 𝑥(𝑥 = 𝑦𝑧𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wex 1778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-nul 5288  ax-pow 5347
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator