MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdemo1 Structured version   Visualization version   GIF version

Theorem dvdemo1 5291
Description: Demonstration of a theorem that requires the setvar variables 𝑥 and 𝑦 to be disjoint (but without any other disjointness conditions, and in particular, none on 𝑧).

That theorem bundles the theorems (𝑥(𝑥 = 𝑦𝑧𝑥) with 𝑥, 𝑦, 𝑧 disjoint), often called its "principal instance", and the two "degenerate instances" (𝑥(𝑥 = 𝑦𝑥𝑥) with 𝑥, 𝑦 disjoint) and (𝑥(𝑥 = 𝑦𝑦𝑥) with 𝑥, 𝑦 disjoint).

Compare with dvdemo2 5292, which has the same principal instance and one common degenerate instance but crucially differs in the other degenerate instance.

See https://us.metamath.org/mpeuni/mmset.html#distinct 5292 for details on the "disjoint variable" mechanism. (The verb "bundle" to express this phenomenon was introduced by Raph Levien.)

Note that dvdemo1 5291 is partially bundled, in that the pairs of setvar variables 𝑥, 𝑧 and 𝑦, 𝑧 need not be disjoint, and in spite of that, its proof does not require ax-11 2156 nor ax-13 2372. (Contributed by NM, 1-Dec-2006.) (Revised by BJ, 13-Jan-2024.)

Assertion
Ref Expression
dvdemo1 𝑥(𝑥 = 𝑦𝑧𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem dvdemo1
StepHypRef Expression
1 dtru 5288 . . 3 ¬ ∀𝑥 𝑥 = 𝑦
2 exnal 1830 . . 3 (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
31, 2mpbir 230 . 2 𝑥 ¬ 𝑥 = 𝑦
4 pm2.21 123 . 2 𝑥 = 𝑦 → (𝑥 = 𝑦𝑧𝑥))
53, 4eximii 1840 1 𝑥(𝑥 = 𝑦𝑧𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-nul 5225  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator