![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
Ref | Expression |
---|---|
necon2bi.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
necon2bi | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bi.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2943 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | con2i 139 | 1 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2939 |
This theorem is referenced by: rzalALT 4516 difsnb 4811 dtrucor2 5378 omeulem1 8619 kmlem6 10194 winainflem 10731 0npi 10920 0npr 11030 0nsr 11117 1div0OLD 11921 rexmul 13310 rennim 15275 mrissmrcd 17685 sdrgacs 20819 prmirred 21503 pthaus 23662 rplogsumlem2 27544 pntrlog2bndlem4 27639 pntrlog2bndlem5 27640 1div0apr 30497 bnj1311 35017 subfacp1lem6 35170 bj-dtrucor2v 36800 itg2addnclem3 37660 cdleme31id 40377 rzalf 44955 jumpncnp 45854 fourierswlem 46186 |
Copyright terms: Public domain | W3C validator |