MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bi Structured version   Visualization version   GIF version

Theorem necon2bi 2990
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.)
Hypothesis
Ref Expression
necon2bi.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necon2bi (𝐴 = 𝐵 → ¬ 𝜑)

Proof of Theorem necon2bi
StepHypRef Expression
1 necon2bi.1 . . 3 (𝜑𝐴𝐵)
21neneqd 2965 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
32con2i 137 1 (𝐴 = 𝐵 → ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1508  wne 2960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-ne 2961
This theorem is referenced by:  rzal  4330  difsnb  4609  dtrucor2  5122  omeulem1  8007  kmlem6  9373  winainflem  9911  0npi  10100  0npr  10210  0nsr  10297  1div0  11098  rexmul  12478  rennim  14457  mrissmrcd  16781  sdrgacs  19314  prmirred  20359  pthaus  21965  rplogsumlem2  25778  pntrlog2bndlem4  25873  pntrlog2bndlem5  25874  1div0apr  28039  bnj1311  31973  subfacp1lem6  32054  bj-dtrucor2v  33666  itg2addnclem3  34423  cdleme31id  37012  rzalf  40731  jumpncnp  41645  fourierswlem  41980
  Copyright terms: Public domain W3C validator