![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
Ref | Expression |
---|---|
necon2bi.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
necon2bi | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bi.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2951 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | con2i 139 | 1 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: rzalALT 4533 difsnb 4831 dtrucor2 5390 omeulem1 8638 kmlem6 10225 winainflem 10762 0npi 10951 0npr 11061 0nsr 11148 1div0OLD 11950 rexmul 13333 rennim 15288 mrissmrcd 17698 sdrgacs 20824 prmirred 21508 pthaus 23667 rplogsumlem2 27547 pntrlog2bndlem4 27642 pntrlog2bndlem5 27643 1div0apr 30500 bnj1311 35000 subfacp1lem6 35153 bj-dtrucor2v 36783 itg2addnclem3 37633 cdleme31id 40351 rzalf 44917 jumpncnp 45819 fourierswlem 46151 |
Copyright terms: Public domain | W3C validator |