MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bi Structured version   Visualization version   GIF version

Theorem necon2bi 2974
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.)
Hypothesis
Ref Expression
necon2bi.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necon2bi (𝐴 = 𝐵 → ¬ 𝜑)

Proof of Theorem necon2bi
StepHypRef Expression
1 necon2bi.1 . . 3 (𝜑𝐴𝐵)
21neneqd 2948 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
32con2i 139 1 (𝐴 = 𝐵 → ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2944
This theorem is referenced by:  rzalALT  4440  difsnb  4739  dtrucor2  5295  omeulem1  8413  kmlem6  9911  winainflem  10449  0npi  10638  0npr  10748  0nsr  10835  1div0  11634  rexmul  13005  rennim  14950  mrissmrcd  17349  sdrgacs  20069  prmirred  20696  pthaus  22789  rplogsumlem2  26633  pntrlog2bndlem4  26728  pntrlog2bndlem5  26729  1div0apr  28832  bnj1311  33004  subfacp1lem6  33147  bj-dtrucor2v  35000  itg2addnclem3  35830  cdleme31id  38408  rzalf  42560  jumpncnp  43439  fourierswlem  43771
  Copyright terms: Public domain W3C validator