| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bi.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| necon2bi | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bi.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2933 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | con2i 139 | 1 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: rzalALT 4460 difsnb 4758 dtrucor2 5310 omeulem1 8497 kmlem6 10044 winainflem 10581 0npi 10770 0npr 10880 0nsr 10967 1div0OLD 11774 rexmul 13167 rennim 15143 mrissmrcd 17543 sdrgacs 20714 prmirred 21409 pthaus 23551 rplogsumlem2 27421 pntrlog2bndlem4 27516 pntrlog2bndlem5 27517 1div0apr 30443 bnj1311 35031 subfacp1lem6 35217 bj-dtrucor2v 36850 itg2addnclem3 37712 cdleme31id 40432 rzalf 45053 jumpncnp 45935 fourierswlem 46267 pgnbgreunbgrlem2lem3 48146 pgnbgreunbgrlem5lem3 48152 |
| Copyright terms: Public domain | W3C validator |