MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bi Structured version   Visualization version   GIF version

Theorem necon2bi 2969
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.)
Hypothesis
Ref Expression
necon2bi.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necon2bi (𝐴 = 𝐵 → ¬ 𝜑)

Proof of Theorem necon2bi
StepHypRef Expression
1 necon2bi.1 . . 3 (𝜑𝐴𝐵)
21neneqd 2943 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
32con2i 139 1 (𝐴 = 𝐵 → ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wne 2938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2939
This theorem is referenced by:  rzalALT  4516  difsnb  4811  dtrucor2  5378  omeulem1  8619  kmlem6  10194  winainflem  10731  0npi  10920  0npr  11030  0nsr  11117  1div0OLD  11921  rexmul  13310  rennim  15275  mrissmrcd  17685  sdrgacs  20819  prmirred  21503  pthaus  23662  rplogsumlem2  27544  pntrlog2bndlem4  27639  pntrlog2bndlem5  27640  1div0apr  30497  bnj1311  35017  subfacp1lem6  35170  bj-dtrucor2v  36800  itg2addnclem3  37660  cdleme31id  40377  rzalf  44955  jumpncnp  45854  fourierswlem  46186
  Copyright terms: Public domain W3C validator