| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bi.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| necon2bi | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bi.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2930 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | con2i 139 | 1 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: rzalALT 4473 difsnb 4770 dtrucor2 5327 omeulem1 8546 kmlem6 10109 winainflem 10646 0npi 10835 0npr 10945 0nsr 11032 1div0OLD 11838 rexmul 13231 rennim 15205 mrissmrcd 17601 sdrgacs 20710 prmirred 21384 pthaus 23525 rplogsumlem2 27396 pntrlog2bndlem4 27491 pntrlog2bndlem5 27492 1div0apr 30397 bnj1311 35014 subfacp1lem6 35172 bj-dtrucor2v 36805 itg2addnclem3 37667 cdleme31id 40388 rzalf 45011 jumpncnp 45896 fourierswlem 46228 pgnbgreunbgrlem2lem3 48106 pgnbgreunbgrlem5lem3 48112 |
| Copyright terms: Public domain | W3C validator |