| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bi.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| necon2bi | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bi.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2930 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | con2i 139 | 1 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: rzalALT 4463 difsnb 4760 dtrucor2 5314 omeulem1 8507 kmlem6 10069 winainflem 10606 0npi 10795 0npr 10905 0nsr 10992 1div0OLD 11798 rexmul 13191 rennim 15164 mrissmrcd 17564 sdrgacs 20704 prmirred 21399 pthaus 23541 rplogsumlem2 27412 pntrlog2bndlem4 27507 pntrlog2bndlem5 27508 1div0apr 30430 bnj1311 34990 subfacp1lem6 35157 bj-dtrucor2v 36790 itg2addnclem3 37652 cdleme31id 40373 rzalf 44995 jumpncnp 45880 fourierswlem 46212 pgnbgreunbgrlem2lem3 48101 pgnbgreunbgrlem5lem3 48107 |
| Copyright terms: Public domain | W3C validator |