MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bi Structured version   Visualization version   GIF version

Theorem necon2bi 2970
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.)
Hypothesis
Ref Expression
necon2bi.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necon2bi (𝐴 = 𝐵 → ¬ 𝜑)

Proof of Theorem necon2bi
StepHypRef Expression
1 necon2bi.1 . . 3 (𝜑𝐴𝐵)
21neneqd 2944 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
32con2i 139 1 (𝐴 = 𝐵 → ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2940
This theorem is referenced by:  rzalALT  4509  difsnb  4809  dtrucor2  5370  omeulem1  8585  kmlem6  10153  winainflem  10691  0npi  10880  0npr  10990  0nsr  11077  1div0  11878  rexmul  13255  rennim  15191  mrissmrcd  17589  sdrgacs  20561  prmirred  21246  pthaus  23363  rplogsumlem2  27225  pntrlog2bndlem4  27320  pntrlog2bndlem5  27321  1div0apr  29989  bnj1311  34334  subfacp1lem6  34475  bj-dtrucor2v  35999  itg2addnclem3  36845  cdleme31id  39569  rzalf  44004  jumpncnp  44913  fourierswlem  45245
  Copyright terms: Public domain W3C validator