MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bi Structured version   Visualization version   GIF version

Theorem necon2bi 2955
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.)
Hypothesis
Ref Expression
necon2bi.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necon2bi (𝐴 = 𝐵 → ¬ 𝜑)

Proof of Theorem necon2bi
StepHypRef Expression
1 necon2bi.1 . . 3 (𝜑𝐴𝐵)
21neneqd 2930 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
32con2i 139 1 (𝐴 = 𝐵 → ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  rzalALT  4463  difsnb  4760  dtrucor2  5314  omeulem1  8507  kmlem6  10069  winainflem  10606  0npi  10795  0npr  10905  0nsr  10992  1div0OLD  11798  rexmul  13191  rennim  15164  mrissmrcd  17564  sdrgacs  20704  prmirred  21399  pthaus  23541  rplogsumlem2  27412  pntrlog2bndlem4  27507  pntrlog2bndlem5  27508  1div0apr  30430  bnj1311  34990  subfacp1lem6  35157  bj-dtrucor2v  36790  itg2addnclem3  37652  cdleme31id  40373  rzalf  44995  jumpncnp  45880  fourierswlem  46212  pgnbgreunbgrlem2lem3  48101  pgnbgreunbgrlem5lem3  48107
  Copyright terms: Public domain W3C validator