| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bi.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| necon2bi | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bi.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2937 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | con2i 139 | 1 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: rzalALT 4485 difsnb 4782 dtrucor2 5342 omeulem1 8594 kmlem6 10170 winainflem 10707 0npi 10896 0npr 11006 0nsr 11093 1div0OLD 11897 rexmul 13287 rennim 15258 mrissmrcd 17652 sdrgacs 20761 prmirred 21435 pthaus 23576 rplogsumlem2 27448 pntrlog2bndlem4 27543 pntrlog2bndlem5 27544 1div0apr 30449 bnj1311 35055 subfacp1lem6 35207 bj-dtrucor2v 36835 itg2addnclem3 37697 cdleme31id 40413 rzalf 45041 jumpncnp 45927 fourierswlem 46259 |
| Copyright terms: Public domain | W3C validator |