| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bi.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| necon2bi | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bi.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2934 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | con2i 139 | 1 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: rzalALT 4459 difsnb 4757 dtrucor2 5312 omeulem1 8503 kmlem6 10054 winainflem 10591 0npi 10780 0npr 10890 0nsr 10977 1div0OLD 11784 rexmul 13172 rennim 15148 mrissmrcd 17548 sdrgacs 20718 prmirred 21413 pthaus 23554 rplogsumlem2 27424 pntrlog2bndlem4 27519 pntrlog2bndlem5 27520 1div0apr 30450 bnj1311 35057 subfacp1lem6 35250 bj-dtrucor2v 36882 itg2addnclem3 37733 cdleme31id 40513 rzalf 45138 jumpncnp 46020 fourierswlem 46352 pgnbgreunbgrlem2lem3 48240 pgnbgreunbgrlem5lem3 48246 |
| Copyright terms: Public domain | W3C validator |