MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bi Structured version   Visualization version   GIF version

Theorem necon2bi 2962
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.)
Hypothesis
Ref Expression
necon2bi.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necon2bi (𝐴 = 𝐵 → ¬ 𝜑)

Proof of Theorem necon2bi
StepHypRef Expression
1 necon2bi.1 . . 3 (𝜑𝐴𝐵)
21neneqd 2937 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
32con2i 139 1 (𝐴 = 𝐵 → ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2933
This theorem is referenced by:  rzalALT  4485  difsnb  4782  dtrucor2  5342  omeulem1  8594  kmlem6  10170  winainflem  10707  0npi  10896  0npr  11006  0nsr  11093  1div0OLD  11897  rexmul  13287  rennim  15258  mrissmrcd  17652  sdrgacs  20761  prmirred  21435  pthaus  23576  rplogsumlem2  27448  pntrlog2bndlem4  27543  pntrlog2bndlem5  27544  1div0apr  30449  bnj1311  35055  subfacp1lem6  35207  bj-dtrucor2v  36835  itg2addnclem3  37697  cdleme31id  40413  rzalf  45041  jumpncnp  45927  fourierswlem  46259
  Copyright terms: Public domain W3C validator