Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon2bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
Ref | Expression |
---|---|
necon2bi.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
necon2bi | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bi.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2947 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | con2i 139 | 1 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: rzalALT 4437 difsnb 4736 dtrucor2 5290 omeulem1 8375 kmlem6 9842 winainflem 10380 0npi 10569 0npr 10679 0nsr 10766 1div0 11564 rexmul 12934 rennim 14878 mrissmrcd 17266 sdrgacs 19984 prmirred 20608 pthaus 22697 rplogsumlem2 26538 pntrlog2bndlem4 26633 pntrlog2bndlem5 26634 1div0apr 28733 bnj1311 32904 subfacp1lem6 33047 bj-dtrucor2v 34927 itg2addnclem3 35757 cdleme31id 38335 rzalf 42449 jumpncnp 43329 fourierswlem 43661 |
Copyright terms: Public domain | W3C validator |