| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bi.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| necon2bi | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bi.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2931 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | con2i 139 | 1 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: rzalALT 4476 difsnb 4773 dtrucor2 5330 omeulem1 8549 kmlem6 10116 winainflem 10653 0npi 10842 0npr 10952 0nsr 11039 1div0OLD 11845 rexmul 13238 rennim 15212 mrissmrcd 17608 sdrgacs 20717 prmirred 21391 pthaus 23532 rplogsumlem2 27403 pntrlog2bndlem4 27498 pntrlog2bndlem5 27499 1div0apr 30404 bnj1311 35021 subfacp1lem6 35179 bj-dtrucor2v 36812 itg2addnclem3 37674 cdleme31id 40395 rzalf 45018 jumpncnp 45903 fourierswlem 46235 pgnbgreunbgrlem2lem3 48110 pgnbgreunbgrlem5lem3 48116 |
| Copyright terms: Public domain | W3C validator |