MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bi Structured version   Visualization version   GIF version

Theorem necon2bi 2971
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.)
Hypothesis
Ref Expression
necon2bi.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necon2bi (𝐴 = 𝐵 → ¬ 𝜑)

Proof of Theorem necon2bi
StepHypRef Expression
1 necon2bi.1 . . 3 (𝜑𝐴𝐵)
21neneqd 2945 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
32con2i 141 1 (𝐴 = 𝐵 → ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1543  wne 2940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-ne 2941
This theorem is referenced by:  rzalALT  4421  difsnb  4719  dtrucor2  5265  omeulem1  8310  kmlem6  9769  winainflem  10307  0npi  10496  0npr  10606  0nsr  10693  1div0  11491  rexmul  12861  rennim  14802  mrissmrcd  17143  sdrgacs  19845  prmirred  20461  pthaus  22535  rplogsumlem2  26366  pntrlog2bndlem4  26461  pntrlog2bndlem5  26462  1div0apr  28551  bnj1311  32717  subfacp1lem6  32860  bj-dtrucor2v  34737  itg2addnclem3  35567  cdleme31id  38145  rzalf  42233  jumpncnp  43114  fourierswlem  43446
  Copyright terms: Public domain W3C validator