![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
Ref | Expression |
---|---|
necon2bi.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
necon2bi | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bi.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2965 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | con2i 137 | 1 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1508 ≠ wne 2960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-ne 2961 |
This theorem is referenced by: rzal 4330 difsnb 4609 dtrucor2 5122 omeulem1 8007 kmlem6 9373 winainflem 9911 0npi 10100 0npr 10210 0nsr 10297 1div0 11098 rexmul 12478 rennim 14457 mrissmrcd 16781 sdrgacs 19314 prmirred 20359 pthaus 21965 rplogsumlem2 25778 pntrlog2bndlem4 25873 pntrlog2bndlem5 25874 1div0apr 28039 bnj1311 31973 subfacp1lem6 32054 bj-dtrucor2v 33666 itg2addnclem3 34423 cdleme31id 37012 rzalf 40731 jumpncnp 41645 fourierswlem 41980 |
Copyright terms: Public domain | W3C validator |