Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon2bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
Ref | Expression |
---|---|
necon2bi.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
necon2bi | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bi.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2948 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | con2i 139 | 1 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: rzalALT 4440 difsnb 4739 dtrucor2 5295 omeulem1 8413 kmlem6 9911 winainflem 10449 0npi 10638 0npr 10748 0nsr 10835 1div0 11634 rexmul 13005 rennim 14950 mrissmrcd 17349 sdrgacs 20069 prmirred 20696 pthaus 22789 rplogsumlem2 26633 pntrlog2bndlem4 26728 pntrlog2bndlem5 26729 1div0apr 28832 bnj1311 33004 subfacp1lem6 33147 bj-dtrucor2v 35000 itg2addnclem3 35830 cdleme31id 38408 rzalf 42560 jumpncnp 43439 fourierswlem 43771 |
Copyright terms: Public domain | W3C validator |