MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dtrucor Structured version   Visualization version   GIF version

Theorem dtrucor 5289
Description: Corollary of dtru 5288. This example illustrates the danger of blindly trusting the standard Deduction Theorem without accounting for free variables: the theorem form of this deduction is not valid, as shown by dtrucor2 5290. (Contributed by NM, 27-Jun-2002.)
Hypothesis
Ref Expression
dtrucor.1 𝑥 = 𝑦
Assertion
Ref Expression
dtrucor 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtrucor
StepHypRef Expression
1 dtru 5288 . . 3 ¬ ∀𝑥 𝑥 = 𝑦
21pm2.21i 119 . 2 (∀𝑥 𝑥 = 𝑦𝑥𝑦)
3 dtrucor.1 . 2 𝑥 = 𝑦
42, 3mpg 1801 1 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wal 1537  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-nul 5225  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator