MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashprb Structured version   Visualization version   GIF version

Theorem hashprb 14304
Description: The size of an unordered pair is 2 if and only if its elements are different sets. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
Assertion
Ref Expression
hashprb ((𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁) ↔ (♯‘{𝑀, 𝑁}) = 2)

Proof of Theorem hashprb
StepHypRef Expression
1 hashprg 14302 . . 3 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → (𝑀𝑁 ↔ (♯‘{𝑀, 𝑁}) = 2))
21biimp3a 1470 . 2 ((𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁) → (♯‘{𝑀, 𝑁}) = 2)
3 elprchashprn2 14303 . . . 4 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2)
4 pm2.21 123 . . . 4 (¬ (♯‘{𝑀, 𝑁}) = 2 → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
53, 4syl 17 . . 3 𝑀 ∈ V → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
6 elprchashprn2 14303 . . . 4 𝑁 ∈ V → ¬ (♯‘{𝑁, 𝑀}) = 2)
7 prcom 4698 . . . . . . 7 {𝑁, 𝑀} = {𝑀, 𝑁}
87fveq2i 6850 . . . . . 6 (♯‘{𝑁, 𝑀}) = (♯‘{𝑀, 𝑁})
98eqeq1i 2742 . . . . 5 ((♯‘{𝑁, 𝑀}) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2)
109, 4sylnbi 330 . . . 4 (¬ (♯‘{𝑁, 𝑀}) = 2 → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
116, 10syl 17 . . 3 𝑁 ∈ V → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
12 simpll 766 . . . . 5 (((𝑀 ∈ V ∧ 𝑁 ∈ V) ∧ (♯‘{𝑀, 𝑁}) = 2) → 𝑀 ∈ V)
13 simplr 768 . . . . 5 (((𝑀 ∈ V ∧ 𝑁 ∈ V) ∧ (♯‘{𝑀, 𝑁}) = 2) → 𝑁 ∈ V)
141biimpar 479 . . . . 5 (((𝑀 ∈ V ∧ 𝑁 ∈ V) ∧ (♯‘{𝑀, 𝑁}) = 2) → 𝑀𝑁)
1512, 13, 143jca 1129 . . . 4 (((𝑀 ∈ V ∧ 𝑁 ∈ V) ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁))
1615ex 414 . . 3 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
175, 11, 16ecase 1032 . 2 ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁))
182, 17impbii 208 1 ((𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁) ↔ (♯‘{𝑀, 𝑁}) = 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2944  Vcvv 3448  {cpr 4593  cfv 6501  2c2 12215  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-hash 14238
This theorem is referenced by:  hashprdifel  14305  prsshashgt1  14317  efmnd2hash  18711  symg2hash  19180  cplgr2vpr  28423
  Copyright terms: Public domain W3C validator