MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashprb Structured version   Visualization version   GIF version

Theorem hashprb 14304
Description: The size of an unordered pair is 2 if and only if its elements are different sets. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
Assertion
Ref Expression
hashprb ((𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁) ↔ (♯‘{𝑀, 𝑁}) = 2)

Proof of Theorem hashprb
StepHypRef Expression
1 hashprg 14302 . . 3 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → (𝑀𝑁 ↔ (♯‘{𝑀, 𝑁}) = 2))
21biimp3a 1471 . 2 ((𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁) → (♯‘{𝑀, 𝑁}) = 2)
3 elprchashprn2 14303 . . . 4 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2)
4 pm2.21 123 . . . 4 (¬ (♯‘{𝑀, 𝑁}) = 2 → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
53, 4syl 17 . . 3 𝑀 ∈ V → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
6 elprchashprn2 14303 . . . 4 𝑁 ∈ V → ¬ (♯‘{𝑁, 𝑀}) = 2)
7 prcom 4685 . . . . . . 7 {𝑁, 𝑀} = {𝑀, 𝑁}
87fveq2i 6825 . . . . . 6 (♯‘{𝑁, 𝑀}) = (♯‘{𝑀, 𝑁})
98eqeq1i 2736 . . . . 5 ((♯‘{𝑁, 𝑀}) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2)
109, 4sylnbi 330 . . . 4 (¬ (♯‘{𝑁, 𝑀}) = 2 → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
116, 10syl 17 . . 3 𝑁 ∈ V → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
12 simpll 766 . . . . 5 (((𝑀 ∈ V ∧ 𝑁 ∈ V) ∧ (♯‘{𝑀, 𝑁}) = 2) → 𝑀 ∈ V)
13 simplr 768 . . . . 5 (((𝑀 ∈ V ∧ 𝑁 ∈ V) ∧ (♯‘{𝑀, 𝑁}) = 2) → 𝑁 ∈ V)
141biimpar 477 . . . . 5 (((𝑀 ∈ V ∧ 𝑁 ∈ V) ∧ (♯‘{𝑀, 𝑁}) = 2) → 𝑀𝑁)
1512, 13, 143jca 1128 . . . 4 (((𝑀 ∈ V ∧ 𝑁 ∈ V) ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁))
1615ex 412 . . 3 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
175, 11, 16ecase 1033 . 2 ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁))
182, 17impbii 209 1 ((𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁) ↔ (♯‘{𝑀, 𝑁}) = 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  {cpr 4578  cfv 6481  2c2 12180  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238
This theorem is referenced by:  hashprdifel  14305  prsshashgt1  14317  efmnd2hash  18802  symg2hash  19305  cplgr2vpr  29412  usgrexmpl1lem  48058  usgrexmpl2lem  48063
  Copyright terms: Public domain W3C validator