MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswspthsnon Structured version   Visualization version   GIF version

Theorem iswspthsnon 29110
Description: The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
iswspthsnon.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
iswspthsnon (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) = {𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀}
Distinct variable groups:   𝐴,𝑓,𝑀   𝐡,𝑓,𝑀   𝑓,𝐺,𝑀   𝑓,𝑁,𝑀   𝑓,𝑉,𝑀

Proof of Theorem iswspthsnon
Dummy variables π‘Ž 𝑏 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ov 7446 . . 3 (π΄βˆ…π΅) = βˆ…
2 df-wspthsnon 29088 . . . . 5 WSPathsNOn = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {𝑀 ∈ (π‘Ž(𝑛 WWalksNOn 𝑔)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜π‘”)𝑏)𝑀}))
32mpondm0 7647 . . . 4 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝑁 WSPathsNOn 𝐺) = βˆ…)
43oveqd 7426 . . 3 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) = (π΄βˆ…π΅))
5 id 22 . . . . . . 7 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V))
65intnanrd 491 . . . . . 6 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ Β¬ ((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉)))
7 iswspthsnon.v . . . . . . 7 𝑉 = (Vtxβ€˜πΊ)
87wwlksnon0 29108 . . . . . 6 (Β¬ ((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉)) β†’ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) = βˆ…)
96, 8syl 17 . . . . 5 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) = βˆ…)
109rabeqdv 3448 . . . 4 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ {𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀} = {𝑀 ∈ βˆ… ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀})
11 rab0 4383 . . . 4 {𝑀 ∈ βˆ… ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀} = βˆ…
1210, 11eqtrdi 2789 . . 3 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ {𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀} = βˆ…)
131, 4, 123eqtr4a 2799 . 2 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) = {𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀})
147wspthsnon 29106 . . . . . . . 8 ((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝑁 WSPathsNOn 𝐺) = (π‘Ž ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑀 ∈ (π‘Ž(𝑁 WWalksNOn 𝐺)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜πΊ)𝑏)𝑀}))
1514adantr 482 . . . . . . 7 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉)) β†’ (𝑁 WSPathsNOn 𝐺) = (π‘Ž ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑀 ∈ (π‘Ž(𝑁 WWalksNOn 𝐺)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜πΊ)𝑏)𝑀}))
1615oveqd 7426 . . . . . 6 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉)) β†’ (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) = (𝐴(π‘Ž ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑀 ∈ (π‘Ž(𝑁 WWalksNOn 𝐺)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜πΊ)𝑏)𝑀})𝐡))
17 eqid 2733 . . . . . . . 8 (π‘Ž ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑀 ∈ (π‘Ž(𝑁 WWalksNOn 𝐺)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜πΊ)𝑏)𝑀}) = (π‘Ž ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑀 ∈ (π‘Ž(𝑁 WWalksNOn 𝐺)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜πΊ)𝑏)𝑀})
1817mpondm0 7647 . . . . . . 7 (Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(π‘Ž ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑀 ∈ (π‘Ž(𝑁 WWalksNOn 𝐺)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜πΊ)𝑏)𝑀})𝐡) = βˆ…)
1918adantl 483 . . . . . 6 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉)) β†’ (𝐴(π‘Ž ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑀 ∈ (π‘Ž(𝑁 WWalksNOn 𝐺)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜πΊ)𝑏)𝑀})𝐡) = βˆ…)
2016, 19eqtrd 2773 . . . . 5 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉)) β†’ (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) = βˆ…)
2120ex 414 . . . 4 ((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) = βˆ…))
224, 1eqtrdi 2789 . . . . 5 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) = βˆ…)
2322a1d 25 . . . 4 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) = βˆ…))
2421, 23pm2.61i 182 . . 3 (Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) = βˆ…)
257wwlksonvtx 29109 . . . . . . . 8 (𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) β†’ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉))
2625pm2.24d 151 . . . . . . 7 (𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) β†’ (Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ Β¬ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀))
2726impcom 409 . . . . . 6 ((Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) ∧ 𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡)) β†’ Β¬ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)
2827nexdv 1940 . . . . 5 ((Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) ∧ 𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡)) β†’ Β¬ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)
2928ralrimiva 3147 . . . 4 (Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ βˆ€π‘€ ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) Β¬ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)
30 rabeq0 4385 . . . 4 ({𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀} = βˆ… ↔ βˆ€π‘€ ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) Β¬ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)
3129, 30sylibr 233 . . 3 (Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ {𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀} = βˆ…)
3224, 31eqtr4d 2776 . 2 (Β¬ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) = {𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀})
3314adantr 482 . . 3 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉)) β†’ (𝑁 WSPathsNOn 𝐺) = (π‘Ž ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑀 ∈ (π‘Ž(𝑁 WWalksNOn 𝐺)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜πΊ)𝑏)𝑀}))
34 oveq12 7418 . . . . 5 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (π‘Ž(𝑁 WWalksNOn 𝐺)𝑏) = (𝐴(𝑁 WWalksNOn 𝐺)𝐡))
35 oveq12 7418 . . . . . . 7 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (π‘Ž(SPathsOnβ€˜πΊ)𝑏) = (𝐴(SPathsOnβ€˜πΊ)𝐡))
3635breqd 5160 . . . . . 6 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (𝑓(π‘Ž(SPathsOnβ€˜πΊ)𝑏)𝑀 ↔ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀))
3736exbidv 1925 . . . . 5 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜πΊ)𝑏)𝑀 ↔ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀))
3834, 37rabeqbidv 3450 . . . 4 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ {𝑀 ∈ (π‘Ž(𝑁 WWalksNOn 𝐺)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜πΊ)𝑏)𝑀} = {𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀})
3938adantl 483 . . 3 ((((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉)) ∧ (π‘Ž = 𝐴 ∧ 𝑏 = 𝐡)) β†’ {𝑀 ∈ (π‘Ž(𝑁 WWalksNOn 𝐺)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜πΊ)𝑏)𝑀} = {𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀})
40 simprl 770 . . 3 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉)) β†’ 𝐴 ∈ 𝑉)
41 simprr 772 . . 3 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉)) β†’ 𝐡 ∈ 𝑉)
42 ovex 7442 . . . . 5 (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∈ V
4342rabex 5333 . . . 4 {𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀} ∈ V
4443a1i 11 . . 3 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉)) β†’ {𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀} ∈ V)
4533, 39, 40, 41, 44ovmpod 7560 . 2 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉)) β†’ (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) = {𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀})
4613, 32, 45ecase 1032 1 (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) = {𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀}
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  βˆ€wral 3062  {crab 3433  Vcvv 3475  βˆ…c0 4323   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  β„•0cn0 12472  Vtxcvtx 28256  SPathsOncspthson 28972   WWalksNOn cwwlksnon 29081   WSPathsNOn cwwspthsnon 29083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-wwlksnon 29086  df-wspthsnon 29088
This theorem is referenced by:  wspthnon  29112  wpthswwlks2on  29215
  Copyright terms: Public domain W3C validator