MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswspthsnon Structured version   Visualization version   GIF version

Theorem iswspthsnon 29786
Description: The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
iswspthsnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iswspthsnon (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}
Distinct variable groups:   𝐴,𝑓,𝑤   𝐵,𝑓,𝑤   𝑓,𝐺,𝑤   𝑓,𝑁,𝑤   𝑓,𝑉,𝑤

Proof of Theorem iswspthsnon
Dummy variables 𝑎 𝑏 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ov 7424 . . 3 (𝐴𝐵) = ∅
2 df-wspthsnon 29764 . . . . 5 WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}))
32mpondm0 7629 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsNOn 𝐺) = ∅)
43oveqd 7404 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = (𝐴𝐵))
5 id 22 . . . . . . 7 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → ¬ (𝑁 ∈ ℕ0𝐺 ∈ V))
65intnanrd 489 . . . . . 6 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → ¬ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))
7 iswspthsnon.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
87wwlksnon0 29784 . . . . . 6 (¬ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
96, 8syl 17 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
109rabeqdv 3421 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
11 rab0 4349 . . . 4 {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅
1210, 11eqtrdi 2780 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅)
131, 4, 123eqtr4a 2790 . 2 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
147wspthsnon 29782 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
1514adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
1615oveqd 7404 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵))
17 eqid 2729 . . . . . . . 8 (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})
1817mpondm0 7629 . . . . . . 7 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵) = ∅)
1918adantl 481 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵) = ∅)
2016, 19eqtrd 2764 . . . . 5 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)
2120ex 412 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅))
224, 1eqtrdi 2780 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)
2322a1d 25 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅))
2421, 23pm2.61i 182 . . 3 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)
257wwlksonvtx 29785 . . . . . . . 8 (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) → (𝐴𝑉𝐵𝑉))
2625pm2.24d 151 . . . . . . 7 (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) → (¬ (𝐴𝑉𝐵𝑉) → ¬ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
2726impcom 407 . . . . . 6 ((¬ (𝐴𝑉𝐵𝑉) ∧ 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) → ¬ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
2827nexdv 1936 . . . . 5 ((¬ (𝐴𝑉𝐵𝑉) ∧ 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) → ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
2928ralrimiva 3125 . . . 4 (¬ (𝐴𝑉𝐵𝑉) → ∀𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
30 rabeq0 4351 . . . 4 ({𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅ ↔ ∀𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
3129, 30sylibr 234 . . 3 (¬ (𝐴𝑉𝐵𝑉) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅)
3224, 31eqtr4d 2767 . 2 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
3314adantr 480 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
34 oveq12 7396 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎(𝑁 WWalksNOn 𝐺)𝑏) = (𝐴(𝑁 WWalksNOn 𝐺)𝐵))
35 oveq12 7396 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎(SPathsOn‘𝐺)𝑏) = (𝐴(SPathsOn‘𝐺)𝐵))
3635breqd 5118 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
3736exbidv 1921 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤 ↔ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
3834, 37rabeqbidv 3424 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤} = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
3938adantl 481 . . 3 ((((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤} = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
40 simprl 770 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐴𝑉)
41 simprr 772 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐵𝑉)
42 ovex 7420 . . . . 5 (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∈ V
4342rabex 5294 . . . 4 {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} ∈ V
4443a1i 11 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} ∈ V)
4533, 39, 40, 41, 44ovmpod 7541 . 2 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
4613, 32, 45ecase 1033 1 (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  cmpo 7389  0cn0 12442  Vtxcvtx 28923  SPathsOncspthson 29643   WWalksNOn cwwlksnon 29757   WSPathsNOn cwwspthsnon 29759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-wwlksnon 29762  df-wspthsnon 29764
This theorem is referenced by:  wspthnon  29788  wpthswwlks2on  29891
  Copyright terms: Public domain W3C validator