Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswspthsnon Structured version   Visualization version   GIF version

Theorem iswspthsnon 27646
 Description: The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
iswspthsnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iswspthsnon (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}
Distinct variable groups:   𝐴,𝑓,𝑤   𝐵,𝑓,𝑤   𝑓,𝐺,𝑤   𝑓,𝑁,𝑤   𝑓,𝑉,𝑤

Proof of Theorem iswspthsnon
Dummy variables 𝑎 𝑏 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ov 7176 . . 3 (𝐴𝐵) = ∅
2 df-wspthsnon 27624 . . . . 5 WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}))
32mpondm0 7370 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsNOn 𝐺) = ∅)
43oveqd 7156 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = (𝐴𝐵))
5 id 22 . . . . . . 7 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → ¬ (𝑁 ∈ ℕ0𝐺 ∈ V))
65intnanrd 493 . . . . . 6 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → ¬ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))
7 iswspthsnon.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
87wwlksnon0 27644 . . . . . 6 (¬ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
96, 8syl 17 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
109rabeqdv 3435 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
11 rab0 4294 . . . 4 {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅
1210, 11eqtrdi 2852 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅)
131, 4, 123eqtr4a 2862 . 2 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
147wspthsnon 27642 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
1514adantr 484 . . . . . . 7 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
1615oveqd 7156 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵))
17 eqid 2801 . . . . . . . 8 (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})
1817mpondm0 7370 . . . . . . 7 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵) = ∅)
1918adantl 485 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵) = ∅)
2016, 19eqtrd 2836 . . . . 5 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)
2120ex 416 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅))
224, 1eqtrdi 2852 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)
2322a1d 25 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅))
2421, 23pm2.61i 185 . . 3 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)
257wwlksonvtx 27645 . . . . . . . 8 (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) → (𝐴𝑉𝐵𝑉))
2625pm2.24d 154 . . . . . . 7 (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) → (¬ (𝐴𝑉𝐵𝑉) → ¬ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
2726impcom 411 . . . . . 6 ((¬ (𝐴𝑉𝐵𝑉) ∧ 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) → ¬ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
2827nexdv 1937 . . . . 5 ((¬ (𝐴𝑉𝐵𝑉) ∧ 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) → ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
2928ralrimiva 3152 . . . 4 (¬ (𝐴𝑉𝐵𝑉) → ∀𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
30 rabeq0 4295 . . . 4 ({𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅ ↔ ∀𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
3129, 30sylibr 237 . . 3 (¬ (𝐴𝑉𝐵𝑉) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅)
3224, 31eqtr4d 2839 . 2 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
3314adantr 484 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
34 oveq12 7148 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎(𝑁 WWalksNOn 𝐺)𝑏) = (𝐴(𝑁 WWalksNOn 𝐺)𝐵))
35 oveq12 7148 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎(SPathsOn‘𝐺)𝑏) = (𝐴(SPathsOn‘𝐺)𝐵))
3635breqd 5044 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
3736exbidv 1922 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤 ↔ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
3834, 37rabeqbidv 3436 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤} = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
3938adantl 485 . . 3 ((((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤} = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
40 simprl 770 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐴𝑉)
41 simprr 772 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐵𝑉)
42 ovex 7172 . . . . 5 (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∈ V
4342rabex 5202 . . . 4 {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} ∈ V
4443a1i 11 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} ∈ V)
4533, 39, 40, 41, 44ovmpod 7285 . 2 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
4613, 32, 45ecase 1029 1 (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2112  ∀wral 3109  {crab 3113  Vcvv 3444  ∅c0 4246   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141  ℕ0cn0 11889  Vtxcvtx 26793  SPathsOncspthson 27508   WWalksNOn cwwlksnon 27617   WSPathsNOn cwwspthsnon 27619 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-wwlksnon 27622  df-wspthsnon 27624 This theorem is referenced by:  wspthnon  27648  wpthswwlks2on  27751
 Copyright terms: Public domain W3C validator