Step | Hyp | Ref
| Expression |
1 | | 0ov 7292 |
. . 3
⊢ (𝐴∅𝐵) = ∅ |
2 | | df-wspthsnon 28100 |
. . . . 5
⊢
WSPathsNOn = (𝑛 ∈
ℕ0, 𝑔
∈ V ↦ (𝑎 ∈
(Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤})) |
3 | 2 | mpondm0 7488 |
. . . 4
⊢ (¬
(𝑁 ∈
ℕ0 ∧ 𝐺
∈ V) → (𝑁
WSPathsNOn 𝐺) =
∅) |
4 | 3 | oveqd 7272 |
. . 3
⊢ (¬
(𝑁 ∈
ℕ0 ∧ 𝐺
∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = (𝐴∅𝐵)) |
5 | | id 22 |
. . . . . . 7
⊢ (¬
(𝑁 ∈
ℕ0 ∧ 𝐺
∈ V) → ¬ (𝑁
∈ ℕ0 ∧ 𝐺 ∈ V)) |
6 | 5 | intnanrd 489 |
. . . . . 6
⊢ (¬
(𝑁 ∈
ℕ0 ∧ 𝐺
∈ V) → ¬ ((𝑁
∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) |
7 | | iswspthsnon.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
8 | 7 | wwlksnon0 28120 |
. . . . . 6
⊢ (¬
((𝑁 ∈
ℕ0 ∧ 𝐺
∈ V) ∧ (𝐴 ∈
𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅) |
9 | 6, 8 | syl 17 |
. . . . 5
⊢ (¬
(𝑁 ∈
ℕ0 ∧ 𝐺
∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅) |
10 | 9 | rabeqdv 3409 |
. . . 4
⊢ (¬
(𝑁 ∈
ℕ0 ∧ 𝐺
∈ V) → {𝑤 ∈
(𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}) |
11 | | rab0 4313 |
. . . 4
⊢ {𝑤 ∈ ∅ ∣
∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅ |
12 | 10, 11 | eqtrdi 2795 |
. . 3
⊢ (¬
(𝑁 ∈
ℕ0 ∧ 𝐺
∈ V) → {𝑤 ∈
(𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅) |
13 | 1, 4, 12 | 3eqtr4a 2805 |
. 2
⊢ (¬
(𝑁 ∈
ℕ0 ∧ 𝐺
∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}) |
14 | 7 | wspthsnon 28118 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐺 ∈ V) →
(𝑁 WSPathsNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})) |
15 | 14 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐺 ∈ V) ∧
¬ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝑁 WSPathsNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})) |
16 | 15 | oveqd 7272 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐺 ∈ V) ∧
¬ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = (𝐴(𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵)) |
17 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}) |
18 | 17 | mpondm0 7488 |
. . . . . . 7
⊢ (¬
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵) = ∅) |
19 | 18 | adantl 481 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐺 ∈ V) ∧
¬ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐴(𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵) = ∅) |
20 | 16, 19 | eqtrd 2778 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐺 ∈ V) ∧
¬ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅) |
21 | 20 | ex 412 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐺 ∈ V) →
(¬ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)) |
22 | 4, 1 | eqtrdi 2795 |
. . . . 5
⊢ (¬
(𝑁 ∈
ℕ0 ∧ 𝐺
∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅) |
23 | 22 | a1d 25 |
. . . 4
⊢ (¬
(𝑁 ∈
ℕ0 ∧ 𝐺
∈ V) → (¬ (𝐴
∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)) |
24 | 21, 23 | pm2.61i 182 |
. . 3
⊢ (¬
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅) |
25 | 7 | wwlksonvtx 28121 |
. . . . . . . 8
⊢ (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) |
26 | 25 | pm2.24d 151 |
. . . . . . 7
⊢ (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) → (¬ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ¬ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
27 | 26 | impcom 407 |
. . . . . 6
⊢ ((¬
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) → ¬ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) |
28 | 27 | nexdv 1940 |
. . . . 5
⊢ ((¬
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) → ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) |
29 | 28 | ralrimiva 3107 |
. . . 4
⊢ (¬
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ∀𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) |
30 | | rabeq0 4315 |
. . . 4
⊢ ({𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅ ↔ ∀𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) |
31 | 29, 30 | sylibr 233 |
. . 3
⊢ (¬
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅) |
32 | 24, 31 | eqtr4d 2781 |
. 2
⊢ (¬
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}) |
33 | 14 | adantr 480 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐺 ∈ V) ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝑁 WSPathsNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})) |
34 | | oveq12 7264 |
. . . . 5
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎(𝑁 WWalksNOn 𝐺)𝑏) = (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) |
35 | | oveq12 7264 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎(SPathsOn‘𝐺)𝑏) = (𝐴(SPathsOn‘𝐺)𝐵)) |
36 | 35 | breqd 5081 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤 ↔ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
37 | 36 | exbidv 1925 |
. . . . 5
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤 ↔ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
38 | 34, 37 | rabeqbidv 3410 |
. . . 4
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤} = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}) |
39 | 38 | adantl 481 |
. . 3
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐺 ∈ V) ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤} = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}) |
40 | | simprl 767 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐺 ∈ V) ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → 𝐴 ∈ 𝑉) |
41 | | simprr 769 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐺 ∈ V) ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → 𝐵 ∈ 𝑉) |
42 | | ovex 7288 |
. . . . 5
⊢ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∈ V |
43 | 42 | rabex 5251 |
. . . 4
⊢ {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} ∈ V |
44 | 43 | a1i 11 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐺 ∈ V) ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} ∈ V) |
45 | 33, 39, 40, 41, 44 | ovmpod 7403 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝐺 ∈ V) ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}) |
46 | 13, 32, 45 | ecase 1029 |
1
⊢ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} |