MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswspthsnon Structured version   Visualization version   GIF version

Theorem iswspthsnon 29793
Description: The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
iswspthsnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iswspthsnon (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}
Distinct variable groups:   𝐴,𝑓,𝑤   𝐵,𝑓,𝑤   𝑓,𝐺,𝑤   𝑓,𝑁,𝑤   𝑓,𝑉,𝑤

Proof of Theorem iswspthsnon
Dummy variables 𝑎 𝑏 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ov 7427 . . 3 (𝐴𝐵) = ∅
2 df-wspthsnon 29771 . . . . 5 WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}))
32mpondm0 7632 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsNOn 𝐺) = ∅)
43oveqd 7407 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = (𝐴𝐵))
5 id 22 . . . . . . 7 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → ¬ (𝑁 ∈ ℕ0𝐺 ∈ V))
65intnanrd 489 . . . . . 6 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → ¬ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))
7 iswspthsnon.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
87wwlksnon0 29791 . . . . . 6 (¬ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
96, 8syl 17 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
109rabeqdv 3424 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
11 rab0 4352 . . . 4 {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅
1210, 11eqtrdi 2781 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅)
131, 4, 123eqtr4a 2791 . 2 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
147wspthsnon 29789 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
1514adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
1615oveqd 7407 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵))
17 eqid 2730 . . . . . . . 8 (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})
1817mpondm0 7632 . . . . . . 7 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵) = ∅)
1918adantl 481 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵) = ∅)
2016, 19eqtrd 2765 . . . . 5 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)
2120ex 412 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅))
224, 1eqtrdi 2781 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)
2322a1d 25 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅))
2421, 23pm2.61i 182 . . 3 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)
257wwlksonvtx 29792 . . . . . . . 8 (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) → (𝐴𝑉𝐵𝑉))
2625pm2.24d 151 . . . . . . 7 (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) → (¬ (𝐴𝑉𝐵𝑉) → ¬ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
2726impcom 407 . . . . . 6 ((¬ (𝐴𝑉𝐵𝑉) ∧ 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) → ¬ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
2827nexdv 1936 . . . . 5 ((¬ (𝐴𝑉𝐵𝑉) ∧ 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) → ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
2928ralrimiva 3126 . . . 4 (¬ (𝐴𝑉𝐵𝑉) → ∀𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
30 rabeq0 4354 . . . 4 ({𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅ ↔ ∀𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
3129, 30sylibr 234 . . 3 (¬ (𝐴𝑉𝐵𝑉) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅)
3224, 31eqtr4d 2768 . 2 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
3314adantr 480 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
34 oveq12 7399 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎(𝑁 WWalksNOn 𝐺)𝑏) = (𝐴(𝑁 WWalksNOn 𝐺)𝐵))
35 oveq12 7399 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎(SPathsOn‘𝐺)𝑏) = (𝐴(SPathsOn‘𝐺)𝐵))
3635breqd 5121 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
3736exbidv 1921 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤 ↔ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
3834, 37rabeqbidv 3427 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤} = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
3938adantl 481 . . 3 ((((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤} = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
40 simprl 770 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐴𝑉)
41 simprr 772 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐵𝑉)
42 ovex 7423 . . . . 5 (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∈ V
4342rabex 5297 . . . 4 {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} ∈ V
4443a1i 11 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} ∈ V)
4533, 39, 40, 41, 44ovmpod 7544 . 2 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
4613, 32, 45ecase 1033 1 (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  cmpo 7392  0cn0 12449  Vtxcvtx 28930  SPathsOncspthson 29650   WWalksNOn cwwlksnon 29764   WSPathsNOn cwwspthsnon 29766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-wwlksnon 29769  df-wspthsnon 29771
This theorem is referenced by:  wspthnon  29795  wpthswwlks2on  29898
  Copyright terms: Public domain W3C validator