MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswspthsnon Structured version   Visualization version   GIF version

Theorem iswspthsnon 29836
Description: The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
iswspthsnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iswspthsnon (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}
Distinct variable groups:   𝐴,𝑓,𝑤   𝐵,𝑓,𝑤   𝑓,𝐺,𝑤   𝑓,𝑁,𝑤   𝑓,𝑉,𝑤

Proof of Theorem iswspthsnon
Dummy variables 𝑎 𝑏 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ov 7389 . . 3 (𝐴𝐵) = ∅
2 df-wspthsnon 29814 . . . . 5 WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}))
32mpondm0 7592 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsNOn 𝐺) = ∅)
43oveqd 7369 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = (𝐴𝐵))
5 id 22 . . . . . . 7 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → ¬ (𝑁 ∈ ℕ0𝐺 ∈ V))
65intnanrd 489 . . . . . 6 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → ¬ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))
7 iswspthsnon.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
87wwlksnon0 29834 . . . . . 6 (¬ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
96, 8syl 17 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
109rabeqdv 3411 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
11 rab0 4335 . . . 4 {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅
1210, 11eqtrdi 2784 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅)
131, 4, 123eqtr4a 2794 . 2 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
147wspthsnon 29832 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
1514adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
1615oveqd 7369 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵))
17 eqid 2733 . . . . . . . 8 (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})
1817mpondm0 7592 . . . . . . 7 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵) = ∅)
1918adantl 481 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})𝐵) = ∅)
2016, 19eqtrd 2768 . . . . 5 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)
2120ex 412 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅))
224, 1eqtrdi 2784 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)
2322a1d 25 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅))
2421, 23pm2.61i 182 . . 3 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = ∅)
257wwlksonvtx 29835 . . . . . . . 8 (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) → (𝐴𝑉𝐵𝑉))
2625pm2.24d 151 . . . . . . 7 (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) → (¬ (𝐴𝑉𝐵𝑉) → ¬ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
2726impcom 407 . . . . . 6 ((¬ (𝐴𝑉𝐵𝑉) ∧ 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) → ¬ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
2827nexdv 1937 . . . . 5 ((¬ (𝐴𝑉𝐵𝑉) ∧ 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) → ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
2928ralrimiva 3125 . . . 4 (¬ (𝐴𝑉𝐵𝑉) → ∀𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
30 rabeq0 4337 . . . 4 ({𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅ ↔ ∀𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ¬ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
3129, 30sylibr 234 . . 3 (¬ (𝐴𝑉𝐵𝑉) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = ∅)
3224, 31eqtr4d 2771 . 2 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
3314adantr 480 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
34 oveq12 7361 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎(𝑁 WWalksNOn 𝐺)𝑏) = (𝐴(𝑁 WWalksNOn 𝐺)𝐵))
35 oveq12 7361 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎(SPathsOn‘𝐺)𝑏) = (𝐴(SPathsOn‘𝐺)𝐵))
3635breqd 5104 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
3736exbidv 1922 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤 ↔ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
3834, 37rabeqbidv 3414 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤} = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
3938adantl 481 . . 3 ((((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤} = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
40 simprl 770 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐴𝑉)
41 simprr 772 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐵𝑉)
42 ovex 7385 . . . . 5 (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∈ V
4342rabex 5279 . . . 4 {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} ∈ V
4443a1i 11 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} ∈ V)
4533, 39, 40, 41, 44ovmpod 7504 . 2 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤})
4613, 32, 45ecase 1033 1 (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wral 3048  {crab 3396  Vcvv 3437  c0 4282   class class class wbr 5093  cfv 6486  (class class class)co 7352  cmpo 7354  0cn0 12388  Vtxcvtx 28976  SPathsOncspthson 29693   WWalksNOn cwwlksnon 29807   WSPathsNOn cwwspthsnon 29809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-wwlksnon 29812  df-wspthsnon 29814
This theorem is referenced by:  wspthnon  29838  wpthswwlks2on  29944
  Copyright terms: Public domain W3C validator