Proof of Theorem txindislem
Step | Hyp | Ref
| Expression |
1 | | 0xp 5675 |
. . 3
⊢ (∅
× ( I ‘𝐵)) =
∅ |
2 | | fvprc 6748 |
. . . 4
⊢ (¬
𝐴 ∈ V → ( I
‘𝐴) =
∅) |
3 | 2 | xpeq1d 5609 |
. . 3
⊢ (¬
𝐴 ∈ V → (( I
‘𝐴) × ( I
‘𝐵)) = (∅
× ( I ‘𝐵))) |
4 | | simpr 484 |
. . . . . . . 8
⊢ ((¬
𝐴 ∈ V ∧ 𝐵 = ∅) → 𝐵 = ∅) |
5 | 4 | xpeq2d 5610 |
. . . . . . 7
⊢ ((¬
𝐴 ∈ V ∧ 𝐵 = ∅) → (𝐴 × 𝐵) = (𝐴 × ∅)) |
6 | | xp0 6050 |
. . . . . . 7
⊢ (𝐴 × ∅) =
∅ |
7 | 5, 6 | eqtrdi 2795 |
. . . . . 6
⊢ ((¬
𝐴 ∈ V ∧ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅) |
8 | 7 | fveq2d 6760 |
. . . . 5
⊢ ((¬
𝐴 ∈ V ∧ 𝐵 = ∅) → ( I
‘(𝐴 × 𝐵)) = ( I
‘∅)) |
9 | | 0ex 5226 |
. . . . . 6
⊢ ∅
∈ V |
10 | | fvi 6826 |
. . . . . 6
⊢ (∅
∈ V → ( I ‘∅) = ∅) |
11 | 9, 10 | ax-mp 5 |
. . . . 5
⊢ ( I
‘∅) = ∅ |
12 | 8, 11 | eqtrdi 2795 |
. . . 4
⊢ ((¬
𝐴 ∈ V ∧ 𝐵 = ∅) → ( I
‘(𝐴 × 𝐵)) = ∅) |
13 | | dmexg 7724 |
. . . . . . . 8
⊢ ((𝐴 × 𝐵) ∈ V → dom (𝐴 × 𝐵) ∈ V) |
14 | | dmxp 5827 |
. . . . . . . . 9
⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
15 | 14 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝐵 ≠ ∅ → (dom (𝐴 × 𝐵) ∈ V ↔ 𝐴 ∈ V)) |
16 | 13, 15 | syl5ib 243 |
. . . . . . 7
⊢ (𝐵 ≠ ∅ → ((𝐴 × 𝐵) ∈ V → 𝐴 ∈ V)) |
17 | 16 | con3d 152 |
. . . . . 6
⊢ (𝐵 ≠ ∅ → (¬
𝐴 ∈ V → ¬
(𝐴 × 𝐵) ∈ V)) |
18 | 17 | impcom 407 |
. . . . 5
⊢ ((¬
𝐴 ∈ V ∧ 𝐵 ≠ ∅) → ¬
(𝐴 × 𝐵) ∈ V) |
19 | | fvprc 6748 |
. . . . 5
⊢ (¬
(𝐴 × 𝐵) ∈ V → ( I
‘(𝐴 × 𝐵)) = ∅) |
20 | 18, 19 | syl 17 |
. . . 4
⊢ ((¬
𝐴 ∈ V ∧ 𝐵 ≠ ∅) → ( I
‘(𝐴 × 𝐵)) = ∅) |
21 | 12, 20 | pm2.61dane 3031 |
. . 3
⊢ (¬
𝐴 ∈ V → ( I
‘(𝐴 × 𝐵)) = ∅) |
22 | 1, 3, 21 | 3eqtr4a 2805 |
. 2
⊢ (¬
𝐴 ∈ V → (( I
‘𝐴) × ( I
‘𝐵)) = ( I
‘(𝐴 × 𝐵))) |
23 | | xp0 6050 |
. . 3
⊢ (( I
‘𝐴) × ∅)
= ∅ |
24 | | fvprc 6748 |
. . . 4
⊢ (¬
𝐵 ∈ V → ( I
‘𝐵) =
∅) |
25 | 24 | xpeq2d 5610 |
. . 3
⊢ (¬
𝐵 ∈ V → (( I
‘𝐴) × ( I
‘𝐵)) = (( I
‘𝐴) ×
∅)) |
26 | | simpr 484 |
. . . . . . . 8
⊢ ((¬
𝐵 ∈ V ∧ 𝐴 = ∅) → 𝐴 = ∅) |
27 | 26 | xpeq1d 5609 |
. . . . . . 7
⊢ ((¬
𝐵 ∈ V ∧ 𝐴 = ∅) → (𝐴 × 𝐵) = (∅ × 𝐵)) |
28 | | 0xp 5675 |
. . . . . . 7
⊢ (∅
× 𝐵) =
∅ |
29 | 27, 28 | eqtrdi 2795 |
. . . . . 6
⊢ ((¬
𝐵 ∈ V ∧ 𝐴 = ∅) → (𝐴 × 𝐵) = ∅) |
30 | 29 | fveq2d 6760 |
. . . . 5
⊢ ((¬
𝐵 ∈ V ∧ 𝐴 = ∅) → ( I
‘(𝐴 × 𝐵)) = ( I
‘∅)) |
31 | 30, 11 | eqtrdi 2795 |
. . . 4
⊢ ((¬
𝐵 ∈ V ∧ 𝐴 = ∅) → ( I
‘(𝐴 × 𝐵)) = ∅) |
32 | | rnexg 7725 |
. . . . . . . 8
⊢ ((𝐴 × 𝐵) ∈ V → ran (𝐴 × 𝐵) ∈ V) |
33 | | rnxp 6062 |
. . . . . . . . 9
⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
34 | 33 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝐴 ≠ ∅ → (ran (𝐴 × 𝐵) ∈ V ↔ 𝐵 ∈ V)) |
35 | 32, 34 | syl5ib 243 |
. . . . . . 7
⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ V → 𝐵 ∈ V)) |
36 | 35 | con3d 152 |
. . . . . 6
⊢ (𝐴 ≠ ∅ → (¬
𝐵 ∈ V → ¬
(𝐴 × 𝐵) ∈ V)) |
37 | 36 | impcom 407 |
. . . . 5
⊢ ((¬
𝐵 ∈ V ∧ 𝐴 ≠ ∅) → ¬
(𝐴 × 𝐵) ∈ V) |
38 | 37, 19 | syl 17 |
. . . 4
⊢ ((¬
𝐵 ∈ V ∧ 𝐴 ≠ ∅) → ( I
‘(𝐴 × 𝐵)) = ∅) |
39 | 31, 38 | pm2.61dane 3031 |
. . 3
⊢ (¬
𝐵 ∈ V → ( I
‘(𝐴 × 𝐵)) = ∅) |
40 | 23, 25, 39 | 3eqtr4a 2805 |
. 2
⊢ (¬
𝐵 ∈ V → (( I
‘𝐴) × ( I
‘𝐵)) = ( I
‘(𝐴 × 𝐵))) |
41 | | fvi 6826 |
. . . 4
⊢ (𝐴 ∈ V → ( I
‘𝐴) = 𝐴) |
42 | | fvi 6826 |
. . . 4
⊢ (𝐵 ∈ V → ( I
‘𝐵) = 𝐵) |
43 | | xpeq12 5605 |
. . . 4
⊢ ((( I
‘𝐴) = 𝐴 ∧ ( I ‘𝐵) = 𝐵) → (( I ‘𝐴) × ( I ‘𝐵)) = (𝐴 × 𝐵)) |
44 | 41, 42, 43 | syl2an 595 |
. . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (( I
‘𝐴) × ( I
‘𝐵)) = (𝐴 × 𝐵)) |
45 | | xpexg 7578 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) |
46 | | fvi 6826 |
. . . 4
⊢ ((𝐴 × 𝐵) ∈ V → ( I ‘(𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
47 | 45, 46 | syl 17 |
. . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ( I
‘(𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
48 | 44, 47 | eqtr4d 2781 |
. 2
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (( I
‘𝐴) × ( I
‘𝐵)) = ( I
‘(𝐴 × 𝐵))) |
49 | 22, 40, 48 | ecase 1029 |
1
⊢ (( I
‘𝐴) × ( I
‘𝐵)) = ( I
‘(𝐴 × 𝐵)) |