MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1to3vfriswmgr Structured version   Visualization version   GIF version

Theorem 1to3vfriswmgr 30312
Description: Every friendship graph with one, two or three vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Hypotheses
Ref Expression
3vfriswmgr.v 𝑉 = (Vtx‘𝐺)
3vfriswmgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
1to3vfriswmgr ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐶   𝑤,𝐸   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝐴,,𝑣,𝑤   𝐵,,𝑣   𝐶,,𝑣   ,𝐸,𝑣   ,𝑉,𝑣
Allowed substitution hints:   𝐺(𝑣,)   𝑋(𝑣,)

Proof of Theorem 1to3vfriswmgr
StepHypRef Expression
1 df-3or 1088 . . 3 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) ↔ ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) ∨ 𝑉 = {𝐴, 𝐵, 𝐶}))
2 3vfriswmgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
3 3vfriswmgr.e . . . . . 6 𝐸 = (Edg‘𝐺)
42, 31to2vfriswmgr 30311 . . . . 5 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
54expcom 413 . . . 4 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
6 tppreq3 4784 . . . . . . 7 (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
76eqeq2d 2751 . . . . . 6 (𝐵 = 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐵}))
8 olc 867 . . . . . . . . 9 (𝑉 = {𝐴, 𝐵} → (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}))
98anim1ci 615 . . . . . . . 8 ((𝑉 = {𝐴, 𝐵} ∧ 𝐴𝑋) → (𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})))
109, 4syl 17 . . . . . . 7 ((𝑉 = {𝐴, 𝐵} ∧ 𝐴𝑋) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
1110ex 412 . . . . . 6 (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
127, 11biimtrdi 253 . . . . 5 (𝐵 = 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
13 tpprceq3 4829 . . . . . . . 8 (¬ (𝐵 ∈ V ∧ 𝐵𝐴) → {𝐶, 𝐴, 𝐵} = {𝐶, 𝐴})
14 tprot 4774 . . . . . . . . . . . . 13 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
1514eqeq1i 2745 . . . . . . . . . . . 12 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} ↔ {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴})
1615biimpi 216 . . . . . . . . . . 11 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴})
17 prcom 4757 . . . . . . . . . . 11 {𝐶, 𝐴} = {𝐴, 𝐶}
1816, 17eqtrdi 2796 . . . . . . . . . 10 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶})
1918eqeq2d 2751 . . . . . . . . 9 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐶}))
20 olc 867 . . . . . . . . . . 11 (𝑉 = {𝐴, 𝐶} → (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐶}))
212, 31to2vfriswmgr 30311 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2220, 21sylan2 592 . . . . . . . . . 10 ((𝐴𝑋𝑉 = {𝐴, 𝐶}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2322expcom 413 . . . . . . . . 9 (𝑉 = {𝐴, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
2419, 23biimtrdi 253 . . . . . . . 8 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
2513, 24syl 17 . . . . . . 7 (¬ (𝐵 ∈ V ∧ 𝐵𝐴) → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
2625a1d 25 . . . . . 6 (¬ (𝐵 ∈ V ∧ 𝐵𝐴) → (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
27 tpprceq3 4829 . . . . . . . 8 (¬ (𝐶 ∈ V ∧ 𝐶𝐴) → {𝐵, 𝐴, 𝐶} = {𝐵, 𝐴})
28 tpcoma 4775 . . . . . . . . . . . . 13 {𝐵, 𝐴, 𝐶} = {𝐴, 𝐵, 𝐶}
2928eqeq1i 2745 . . . . . . . . . . . 12 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} ↔ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴})
3029biimpi 216 . . . . . . . . . . 11 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴})
31 prcom 4757 . . . . . . . . . . 11 {𝐵, 𝐴} = {𝐴, 𝐵}
3230, 31eqtrdi 2796 . . . . . . . . . 10 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
3332eqeq2d 2751 . . . . . . . . 9 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐵}))
348, 4sylan2 592 . . . . . . . . . . 11 ((𝐴𝑋𝑉 = {𝐴, 𝐵}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
3534expcom 413 . . . . . . . . . 10 (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
3635a1d 25 . . . . . . . . 9 (𝑉 = {𝐴, 𝐵} → (𝐵𝐶 → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
3733, 36biimtrdi 253 . . . . . . . 8 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐵𝐶 → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
3827, 37syl 17 . . . . . . 7 (¬ (𝐶 ∈ V ∧ 𝐶𝐴) → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐵𝐶 → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
3938com23 86 . . . . . 6 (¬ (𝐶 ∈ V ∧ 𝐶𝐴) → (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
40 simpl 482 . . . . . . . . . . . 12 ((𝐵 ∈ V ∧ 𝐵𝐴) → 𝐵 ∈ V)
41 simpl 482 . . . . . . . . . . . 12 ((𝐶 ∈ V ∧ 𝐶𝐴) → 𝐶 ∈ V)
4240, 41anim12i 612 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
4342ad2antrr 725 . . . . . . . . . 10 (((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
4443anim1ci 615 . . . . . . . . 9 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐴𝑋 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)))
45 3anass 1095 . . . . . . . . 9 ((𝐴𝑋𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝐴𝑋 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)))
4644, 45sylibr 234 . . . . . . . 8 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐴𝑋𝐵 ∈ V ∧ 𝐶 ∈ V))
47 simpr 484 . . . . . . . . . . . . 13 ((𝐵 ∈ V ∧ 𝐵𝐴) → 𝐵𝐴)
4847necomd 3002 . . . . . . . . . . . 12 ((𝐵 ∈ V ∧ 𝐵𝐴) → 𝐴𝐵)
49 simpr 484 . . . . . . . . . . . . 13 ((𝐶 ∈ V ∧ 𝐶𝐴) → 𝐶𝐴)
5049necomd 3002 . . . . . . . . . . . 12 ((𝐶 ∈ V ∧ 𝐶𝐴) → 𝐴𝐶)
5148, 50anim12i 612 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) → (𝐴𝐵𝐴𝐶))
5251anim1i 614 . . . . . . . . . 10 ((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) → ((𝐴𝐵𝐴𝐶) ∧ 𝐵𝐶))
53 df-3an 1089 . . . . . . . . . 10 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ ((𝐴𝐵𝐴𝐶) ∧ 𝐵𝐶))
5452, 53sylibr 234 . . . . . . . . 9 ((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) → (𝐴𝐵𝐴𝐶𝐵𝐶))
5554ad2antrr 725 . . . . . . . 8 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐴𝐵𝐴𝐶𝐵𝐶))
56 simplr 768 . . . . . . . 8 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → 𝑉 = {𝐴, 𝐵, 𝐶})
572, 33vfriswmgr 30310 . . . . . . . 8 (((𝐴𝑋𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
5846, 55, 56, 57syl3anc 1371 . . . . . . 7 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
5958exp41 434 . . . . . 6 (((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) → (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
6026, 39, 59ecase 1033 . . . . 5 (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
6112, 60pm2.61ine 3031 . . . 4 (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
625, 61jaoi 856 . . 3 (((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
631, 62sylbi 217 . 2 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
6463impcom 407 1 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  ∃!wreu 3386  Vcvv 3488  cdif 3973  {csn 4648  {cpr 4650  {ctp 4652  cfv 6573  Vtxcvtx 29031  Edgcedg 29082   FriendGraph cfrgr 30290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-edg 29083  df-umgr 29118  df-usgr 29186  df-frgr 30291
This theorem is referenced by:  1to3vfriendship  30313
  Copyright terms: Public domain W3C validator