Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1to3vfriswmgr Structured version   Visualization version   GIF version

Theorem 1to3vfriswmgr 28178
 Description: Every friendship graph with one, two or three vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Hypotheses
Ref Expression
3vfriswmgr.v 𝑉 = (Vtx‘𝐺)
3vfriswmgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
1to3vfriswmgr ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐶   𝑤,𝐸   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝐴,,𝑣,𝑤   𝐵,,𝑣   𝐶,,𝑣   ,𝐸,𝑣   ,𝑉,𝑣
Allowed substitution hints:   𝐺(𝑣,)   𝑋(𝑣,)

Proof of Theorem 1to3vfriswmgr
StepHypRef Expression
1 df-3or 1085 . . 3 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) ↔ ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) ∨ 𝑉 = {𝐴, 𝐵, 𝐶}))
2 3vfriswmgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
3 3vfriswmgr.e . . . . . 6 𝐸 = (Edg‘𝐺)
42, 31to2vfriswmgr 28177 . . . . 5 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
54expcom 417 . . . 4 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
6 tppreq3 4655 . . . . . . 7 (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
76eqeq2d 2769 . . . . . 6 (𝐵 = 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐵}))
8 olc 865 . . . . . . . . 9 (𝑉 = {𝐴, 𝐵} → (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}))
98anim1ci 618 . . . . . . . 8 ((𝑉 = {𝐴, 𝐵} ∧ 𝐴𝑋) → (𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})))
109, 4syl 17 . . . . . . 7 ((𝑉 = {𝐴, 𝐵} ∧ 𝐴𝑋) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
1110ex 416 . . . . . 6 (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
127, 11syl6bi 256 . . . . 5 (𝐵 = 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
13 tpprceq3 4697 . . . . . . . 8 (¬ (𝐵 ∈ V ∧ 𝐵𝐴) → {𝐶, 𝐴, 𝐵} = {𝐶, 𝐴})
14 tprot 4645 . . . . . . . . . . . . 13 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
1514eqeq1i 2763 . . . . . . . . . . . 12 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} ↔ {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴})
1615biimpi 219 . . . . . . . . . . 11 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴})
17 prcom 4628 . . . . . . . . . . 11 {𝐶, 𝐴} = {𝐴, 𝐶}
1816, 17eqtrdi 2809 . . . . . . . . . 10 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶})
1918eqeq2d 2769 . . . . . . . . 9 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐶}))
20 olc 865 . . . . . . . . . . 11 (𝑉 = {𝐴, 𝐶} → (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐶}))
212, 31to2vfriswmgr 28177 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2220, 21sylan2 595 . . . . . . . . . 10 ((𝐴𝑋𝑉 = {𝐴, 𝐶}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2322expcom 417 . . . . . . . . 9 (𝑉 = {𝐴, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
2419, 23syl6bi 256 . . . . . . . 8 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
2513, 24syl 17 . . . . . . 7 (¬ (𝐵 ∈ V ∧ 𝐵𝐴) → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
2625a1d 25 . . . . . 6 (¬ (𝐵 ∈ V ∧ 𝐵𝐴) → (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
27 tpprceq3 4697 . . . . . . . 8 (¬ (𝐶 ∈ V ∧ 𝐶𝐴) → {𝐵, 𝐴, 𝐶} = {𝐵, 𝐴})
28 tpcoma 4646 . . . . . . . . . . . . 13 {𝐵, 𝐴, 𝐶} = {𝐴, 𝐵, 𝐶}
2928eqeq1i 2763 . . . . . . . . . . . 12 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} ↔ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴})
3029biimpi 219 . . . . . . . . . . 11 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴})
31 prcom 4628 . . . . . . . . . . 11 {𝐵, 𝐴} = {𝐴, 𝐵}
3230, 31eqtrdi 2809 . . . . . . . . . 10 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
3332eqeq2d 2769 . . . . . . . . 9 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐵}))
348, 4sylan2 595 . . . . . . . . . . 11 ((𝐴𝑋𝑉 = {𝐴, 𝐵}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
3534expcom 417 . . . . . . . . . 10 (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
3635a1d 25 . . . . . . . . 9 (𝑉 = {𝐴, 𝐵} → (𝐵𝐶 → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
3733, 36syl6bi 256 . . . . . . . 8 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐵𝐶 → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
3827, 37syl 17 . . . . . . 7 (¬ (𝐶 ∈ V ∧ 𝐶𝐴) → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐵𝐶 → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
3938com23 86 . . . . . 6 (¬ (𝐶 ∈ V ∧ 𝐶𝐴) → (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
40 simpl 486 . . . . . . . . . . . 12 ((𝐵 ∈ V ∧ 𝐵𝐴) → 𝐵 ∈ V)
41 simpl 486 . . . . . . . . . . . 12 ((𝐶 ∈ V ∧ 𝐶𝐴) → 𝐶 ∈ V)
4240, 41anim12i 615 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
4342ad2antrr 725 . . . . . . . . . 10 (((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
4443anim1ci 618 . . . . . . . . 9 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐴𝑋 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)))
45 3anass 1092 . . . . . . . . 9 ((𝐴𝑋𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝐴𝑋 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)))
4644, 45sylibr 237 . . . . . . . 8 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐴𝑋𝐵 ∈ V ∧ 𝐶 ∈ V))
47 simpr 488 . . . . . . . . . . . . 13 ((𝐵 ∈ V ∧ 𝐵𝐴) → 𝐵𝐴)
4847necomd 3006 . . . . . . . . . . . 12 ((𝐵 ∈ V ∧ 𝐵𝐴) → 𝐴𝐵)
49 simpr 488 . . . . . . . . . . . . 13 ((𝐶 ∈ V ∧ 𝐶𝐴) → 𝐶𝐴)
5049necomd 3006 . . . . . . . . . . . 12 ((𝐶 ∈ V ∧ 𝐶𝐴) → 𝐴𝐶)
5148, 50anim12i 615 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) → (𝐴𝐵𝐴𝐶))
5251anim1i 617 . . . . . . . . . 10 ((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) → ((𝐴𝐵𝐴𝐶) ∧ 𝐵𝐶))
53 df-3an 1086 . . . . . . . . . 10 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ ((𝐴𝐵𝐴𝐶) ∧ 𝐵𝐶))
5452, 53sylibr 237 . . . . . . . . 9 ((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) → (𝐴𝐵𝐴𝐶𝐵𝐶))
5554ad2antrr 725 . . . . . . . 8 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐴𝐵𝐴𝐶𝐵𝐶))
56 simplr 768 . . . . . . . 8 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → 𝑉 = {𝐴, 𝐵, 𝐶})
572, 33vfriswmgr 28176 . . . . . . . 8 (((𝐴𝑋𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
5846, 55, 56, 57syl3anc 1368 . . . . . . 7 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
5958exp41 438 . . . . . 6 (((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) → (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
6026, 39, 59ecase 1029 . . . . 5 (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
6112, 60pm2.61ine 3034 . . . 4 (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
625, 61jaoi 854 . . 3 (((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
631, 62sylbi 220 . 2 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
6463impcom 411 1 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∨ wo 844   ∨ w3o 1083   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  ∃wrex 3071  ∃!wreu 3072  Vcvv 3409   ∖ cdif 3857  {csn 4525  {cpr 4527  {ctp 4529  ‘cfv 6340  Vtxcvtx 26902  Edgcedg 26953   FriendGraph cfrgr 28156 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-oadd 8122  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-dju 9376  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-hash 13754  df-edg 26954  df-umgr 26989  df-usgr 27057  df-frgr 28157 This theorem is referenced by:  1to3vfriendship  28179
 Copyright terms: Public domain W3C validator