MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1to3vfriswmgr Structured version   Visualization version   GIF version

Theorem 1to3vfriswmgr 27973
Description: Every friendship graph with one, two or three vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Hypotheses
Ref Expression
3vfriswmgr.v 𝑉 = (Vtx‘𝐺)
3vfriswmgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
1to3vfriswmgr ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐶   𝑤,𝐸   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝐴,,𝑣,𝑤   𝐵,,𝑣   𝐶,,𝑣   ,𝐸,𝑣   ,𝑉,𝑣
Allowed substitution hints:   𝐺(𝑣,)   𝑋(𝑣,)

Proof of Theorem 1to3vfriswmgr
StepHypRef Expression
1 df-3or 1082 . . 3 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) ↔ ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) ∨ 𝑉 = {𝐴, 𝐵, 𝐶}))
2 3vfriswmgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
3 3vfriswmgr.e . . . . . 6 𝐸 = (Edg‘𝐺)
42, 31to2vfriswmgr 27972 . . . . 5 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
54expcom 414 . . . 4 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
6 tppreq3 4694 . . . . . . 7 (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
76eqeq2d 2837 . . . . . 6 (𝐵 = 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐵}))
8 olc 864 . . . . . . . . 9 (𝑉 = {𝐴, 𝐵} → (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}))
98anim1ci 615 . . . . . . . 8 ((𝑉 = {𝐴, 𝐵} ∧ 𝐴𝑋) → (𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})))
109, 4syl 17 . . . . . . 7 ((𝑉 = {𝐴, 𝐵} ∧ 𝐴𝑋) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
1110ex 413 . . . . . 6 (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
127, 11syl6bi 254 . . . . 5 (𝐵 = 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
13 tpprceq3 4736 . . . . . . . 8 (¬ (𝐵 ∈ V ∧ 𝐵𝐴) → {𝐶, 𝐴, 𝐵} = {𝐶, 𝐴})
14 tprot 4684 . . . . . . . . . . . . 13 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
1514eqeq1i 2831 . . . . . . . . . . . 12 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} ↔ {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴})
1615biimpi 217 . . . . . . . . . . 11 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴})
17 prcom 4667 . . . . . . . . . . 11 {𝐶, 𝐴} = {𝐴, 𝐶}
1816, 17syl6eq 2877 . . . . . . . . . 10 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶})
1918eqeq2d 2837 . . . . . . . . 9 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐶}))
20 olc 864 . . . . . . . . . . 11 (𝑉 = {𝐴, 𝐶} → (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐶}))
212, 31to2vfriswmgr 27972 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2220, 21sylan2 592 . . . . . . . . . 10 ((𝐴𝑋𝑉 = {𝐴, 𝐶}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2322expcom 414 . . . . . . . . 9 (𝑉 = {𝐴, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
2419, 23syl6bi 254 . . . . . . . 8 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
2513, 24syl 17 . . . . . . 7 (¬ (𝐵 ∈ V ∧ 𝐵𝐴) → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
2625a1d 25 . . . . . 6 (¬ (𝐵 ∈ V ∧ 𝐵𝐴) → (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
27 tpprceq3 4736 . . . . . . . 8 (¬ (𝐶 ∈ V ∧ 𝐶𝐴) → {𝐵, 𝐴, 𝐶} = {𝐵, 𝐴})
28 tpcoma 4685 . . . . . . . . . . . . 13 {𝐵, 𝐴, 𝐶} = {𝐴, 𝐵, 𝐶}
2928eqeq1i 2831 . . . . . . . . . . . 12 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} ↔ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴})
3029biimpi 217 . . . . . . . . . . 11 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴})
31 prcom 4667 . . . . . . . . . . 11 {𝐵, 𝐴} = {𝐴, 𝐵}
3230, 31syl6eq 2877 . . . . . . . . . 10 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
3332eqeq2d 2837 . . . . . . . . 9 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐵}))
348, 4sylan2 592 . . . . . . . . . . 11 ((𝐴𝑋𝑉 = {𝐴, 𝐵}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
3534expcom 414 . . . . . . . . . 10 (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
3635a1d 25 . . . . . . . . 9 (𝑉 = {𝐴, 𝐵} → (𝐵𝐶 → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
3733, 36syl6bi 254 . . . . . . . 8 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐵𝐶 → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
3827, 37syl 17 . . . . . . 7 (¬ (𝐶 ∈ V ∧ 𝐶𝐴) → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐵𝐶 → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
3938com23 86 . . . . . 6 (¬ (𝐶 ∈ V ∧ 𝐶𝐴) → (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
40 simpl 483 . . . . . . . . . . . 12 ((𝐵 ∈ V ∧ 𝐵𝐴) → 𝐵 ∈ V)
41 simpl 483 . . . . . . . . . . . 12 ((𝐶 ∈ V ∧ 𝐶𝐴) → 𝐶 ∈ V)
4240, 41anim12i 612 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
4342ad2antrr 722 . . . . . . . . . 10 (((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
4443anim1ci 615 . . . . . . . . 9 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐴𝑋 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)))
45 3anass 1089 . . . . . . . . 9 ((𝐴𝑋𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝐴𝑋 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)))
4644, 45sylibr 235 . . . . . . . 8 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐴𝑋𝐵 ∈ V ∧ 𝐶 ∈ V))
47 simpr 485 . . . . . . . . . . . . 13 ((𝐵 ∈ V ∧ 𝐵𝐴) → 𝐵𝐴)
4847necomd 3076 . . . . . . . . . . . 12 ((𝐵 ∈ V ∧ 𝐵𝐴) → 𝐴𝐵)
49 simpr 485 . . . . . . . . . . . . 13 ((𝐶 ∈ V ∧ 𝐶𝐴) → 𝐶𝐴)
5049necomd 3076 . . . . . . . . . . . 12 ((𝐶 ∈ V ∧ 𝐶𝐴) → 𝐴𝐶)
5148, 50anim12i 612 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) → (𝐴𝐵𝐴𝐶))
5251anim1i 614 . . . . . . . . . 10 ((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) → ((𝐴𝐵𝐴𝐶) ∧ 𝐵𝐶))
53 df-3an 1083 . . . . . . . . . 10 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ ((𝐴𝐵𝐴𝐶) ∧ 𝐵𝐶))
5452, 53sylibr 235 . . . . . . . . 9 ((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) → (𝐴𝐵𝐴𝐶𝐵𝐶))
5554ad2antrr 722 . . . . . . . 8 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐴𝐵𝐴𝐶𝐵𝐶))
56 simplr 765 . . . . . . . 8 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → 𝑉 = {𝐴, 𝐵, 𝐶})
572, 33vfriswmgr 27971 . . . . . . . 8 (((𝐴𝑋𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
5846, 55, 56, 57syl3anc 1365 . . . . . . 7 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
5958exp41 435 . . . . . 6 (((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) → (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
6026, 39, 59ecase 1027 . . . . 5 (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
6112, 60pm2.61ine 3105 . . . 4 (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
625, 61jaoi 853 . . 3 (((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
631, 62sylbi 218 . 2 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
6463impcom 408 1 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 843  w3o 1080  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  wrex 3144  ∃!wreu 3145  Vcvv 3500  cdif 3937  {csn 4564  {cpr 4566  {ctp 4568  cfv 6352  Vtxcvtx 26695  Edgcedg 26746   FriendGraph cfrgr 27951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-dju 9319  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-hash 13681  df-edg 26747  df-umgr 26782  df-usgr 26850  df-frgr 27952
This theorem is referenced by:  1to3vfriendship  27974
  Copyright terms: Public domain W3C validator