Proof of Theorem 1to3vfriswmgr
Step | Hyp | Ref
| Expression |
1 | | df-3or 1086 |
. . 3
⊢ ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) ↔ ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) |
2 | | 3vfriswmgr.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
3 | | 3vfriswmgr.e |
. . . . . 6
⊢ 𝐸 = (Edg‘𝐺) |
4 | 2, 3 | 1to2vfriswmgr 28544 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) |
5 | 4 | expcom 413 |
. . . 4
⊢ ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)))) |
6 | | tppreq3 4692 |
. . . . . . 7
⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
7 | 6 | eqeq2d 2749 |
. . . . . 6
⊢ (𝐵 = 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐵})) |
8 | | olc 864 |
. . . . . . . . 9
⊢ (𝑉 = {𝐴, 𝐵} → (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) |
9 | 8 | anim1ci 615 |
. . . . . . . 8
⊢ ((𝑉 = {𝐴, 𝐵} ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}))) |
10 | 9, 4 | syl 17 |
. . . . . . 7
⊢ ((𝑉 = {𝐴, 𝐵} ∧ 𝐴 ∈ 𝑋) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) |
11 | 10 | ex 412 |
. . . . . 6
⊢ (𝑉 = {𝐴, 𝐵} → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)))) |
12 | 7, 11 | syl6bi 252 |
. . . . 5
⊢ (𝐵 = 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))))) |
13 | | tpprceq3 4734 |
. . . . . . . 8
⊢ (¬
(𝐵 ∈ V ∧ 𝐵 ≠ 𝐴) → {𝐶, 𝐴, 𝐵} = {𝐶, 𝐴}) |
14 | | tprot 4682 |
. . . . . . . . . . . . 13
⊢ {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶} |
15 | 14 | eqeq1i 2743 |
. . . . . . . . . . . 12
⊢ ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} ↔ {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴}) |
16 | 15 | biimpi 215 |
. . . . . . . . . . 11
⊢ ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴}) |
17 | | prcom 4665 |
. . . . . . . . . . 11
⊢ {𝐶, 𝐴} = {𝐴, 𝐶} |
18 | 16, 17 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶}) |
19 | 18 | eqeq2d 2749 |
. . . . . . . . 9
⊢ ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐶})) |
20 | | olc 864 |
. . . . . . . . . . 11
⊢ (𝑉 = {𝐴, 𝐶} → (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐶})) |
21 | 2, 3 | 1to2vfriswmgr 28544 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐶})) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) |
22 | 20, 21 | sylan2 592 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑉 = {𝐴, 𝐶}) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) |
23 | 22 | expcom 413 |
. . . . . . . . 9
⊢ (𝑉 = {𝐴, 𝐶} → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)))) |
24 | 19, 23 | syl6bi 252 |
. . . . . . . 8
⊢ ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))))) |
25 | 13, 24 | syl 17 |
. . . . . . 7
⊢ (¬
(𝐵 ∈ V ∧ 𝐵 ≠ 𝐴) → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))))) |
26 | 25 | a1d 25 |
. . . . . 6
⊢ (¬
(𝐵 ∈ V ∧ 𝐵 ≠ 𝐴) → (𝐵 ≠ 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)))))) |
27 | | tpprceq3 4734 |
. . . . . . . 8
⊢ (¬
(𝐶 ∈ V ∧ 𝐶 ≠ 𝐴) → {𝐵, 𝐴, 𝐶} = {𝐵, 𝐴}) |
28 | | tpcoma 4683 |
. . . . . . . . . . . . 13
⊢ {𝐵, 𝐴, 𝐶} = {𝐴, 𝐵, 𝐶} |
29 | 28 | eqeq1i 2743 |
. . . . . . . . . . . 12
⊢ ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} ↔ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴}) |
30 | 29 | biimpi 215 |
. . . . . . . . . . 11
⊢ ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴}) |
31 | | prcom 4665 |
. . . . . . . . . . 11
⊢ {𝐵, 𝐴} = {𝐴, 𝐵} |
32 | 30, 31 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
33 | 32 | eqeq2d 2749 |
. . . . . . . . 9
⊢ ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐵})) |
34 | 8, 4 | sylan2 592 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑉 = {𝐴, 𝐵}) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) |
35 | 34 | expcom 413 |
. . . . . . . . . 10
⊢ (𝑉 = {𝐴, 𝐵} → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)))) |
36 | 35 | a1d 25 |
. . . . . . . . 9
⊢ (𝑉 = {𝐴, 𝐵} → (𝐵 ≠ 𝐶 → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))))) |
37 | 33, 36 | syl6bi 252 |
. . . . . . . 8
⊢ ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐵 ≠ 𝐶 → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)))))) |
38 | 27, 37 | syl 17 |
. . . . . . 7
⊢ (¬
(𝐶 ∈ V ∧ 𝐶 ≠ 𝐴) → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐵 ≠ 𝐶 → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)))))) |
39 | 38 | com23 86 |
. . . . . 6
⊢ (¬
(𝐶 ∈ V ∧ 𝐶 ≠ 𝐴) → (𝐵 ≠ 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)))))) |
40 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ V ∧ 𝐵 ≠ 𝐴) → 𝐵 ∈ V) |
41 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ V ∧ 𝐶 ≠ 𝐴) → 𝐶 ∈ V) |
42 | 40, 41 | anim12i 612 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ V ∧ 𝐵 ≠ 𝐴) ∧ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
43 | 42 | ad2antrr 722 |
. . . . . . . . . 10
⊢
(((((𝐵 ∈ V
∧ 𝐵 ≠ 𝐴) ∧ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) ∧ 𝐵 ≠ 𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
44 | 43 | anim1ci 615 |
. . . . . . . . 9
⊢
((((((𝐵 ∈ V
∧ 𝐵 ≠ 𝐴) ∧ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) ∧ 𝐵 ≠ 𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V))) |
45 | | 3anass 1093 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝐴 ∈ 𝑋 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V))) |
46 | 44, 45 | sylibr 233 |
. . . . . . . 8
⊢
((((((𝐵 ∈ V
∧ 𝐵 ≠ 𝐴) ∧ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) ∧ 𝐵 ≠ 𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V)) |
47 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ V ∧ 𝐵 ≠ 𝐴) → 𝐵 ≠ 𝐴) |
48 | 47 | necomd 2998 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ V ∧ 𝐵 ≠ 𝐴) → 𝐴 ≠ 𝐵) |
49 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ V ∧ 𝐶 ≠ 𝐴) → 𝐶 ≠ 𝐴) |
50 | 49 | necomd 2998 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ V ∧ 𝐶 ≠ 𝐴) → 𝐴 ≠ 𝐶) |
51 | 48, 50 | anim12i 612 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ V ∧ 𝐵 ≠ 𝐴) ∧ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
52 | 51 | anim1i 614 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ V ∧ 𝐵 ≠ 𝐴) ∧ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) ∧ 𝐵 ≠ 𝐶) → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶)) |
53 | | df-3an 1087 |
. . . . . . . . . 10
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ↔ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶)) |
54 | 52, 53 | sylibr 233 |
. . . . . . . . 9
⊢ ((((𝐵 ∈ V ∧ 𝐵 ≠ 𝐴) ∧ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) ∧ 𝐵 ≠ 𝐶) → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) |
55 | 54 | ad2antrr 722 |
. . . . . . . 8
⊢
((((((𝐵 ∈ V
∧ 𝐵 ≠ 𝐴) ∧ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) ∧ 𝐵 ≠ 𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴 ∈ 𝑋) → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) |
56 | | simplr 765 |
. . . . . . . 8
⊢
((((((𝐵 ∈ V
∧ 𝐵 ≠ 𝐴) ∧ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) ∧ 𝐵 ≠ 𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴 ∈ 𝑋) → 𝑉 = {𝐴, 𝐵, 𝐶}) |
57 | 2, 3 | 3vfriswmgr 28543 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) |
58 | 46, 55, 56, 57 | syl3anc 1369 |
. . . . . . 7
⊢
((((((𝐵 ∈ V
∧ 𝐵 ≠ 𝐴) ∧ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) ∧ 𝐵 ≠ 𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴 ∈ 𝑋) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) |
59 | 58 | exp41 434 |
. . . . . 6
⊢ (((𝐵 ∈ V ∧ 𝐵 ≠ 𝐴) ∧ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴)) → (𝐵 ≠ 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)))))) |
60 | 26, 39, 59 | ecase 1029 |
. . . . 5
⊢ (𝐵 ≠ 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))))) |
61 | 12, 60 | pm2.61ine 3027 |
. . . 4
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)))) |
62 | 5, 61 | jaoi 853 |
. . 3
⊢ (((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)))) |
63 | 1, 62 | sylbi 216 |
. 2
⊢ ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐴 ∈ 𝑋 → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)))) |
64 | 63 | impcom 407 |
1
⊢ ((𝐴 ∈ 𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) |