Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee33VD Structured version   Visualization version   GIF version

Theorem ee33VD 42499
Description: Non-virtual deduction form of e33 42354. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ee33 42141 is ee33VD 42499 without virtual deductions and was automatically derived from ee33VD 42499.
h1:: (𝜑 → (𝜓 → (𝜒𝜃)))
h2:: (𝜑 → (𝜓 → (𝜒𝜏)))
h3:: (𝜃 → (𝜏𝜂))
4:1,3: (𝜑 → (𝜓 → (𝜒 → (𝜏𝜂))))
5:4: (𝜏 → (𝜑 → (𝜓 → (𝜒𝜂))))
6:2,5: (𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))))
7:6: (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒 𝜂)))))
8:7: (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))
qed:8: (𝜑 → (𝜓 → (𝜒𝜂)))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee33VD.1 (𝜑 → (𝜓 → (𝜒𝜃)))
ee33VD.2 (𝜑 → (𝜓 → (𝜒𝜏)))
ee33VD.3 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
ee33VD (𝜑 → (𝜓 → (𝜒𝜂)))

Proof of Theorem ee33VD
StepHypRef Expression
1 ee33VD.2 . . . . 5 (𝜑 → (𝜓 → (𝜒𝜏)))
2 ee33VD.1 . . . . . . 7 (𝜑 → (𝜓 → (𝜒𝜃)))
3 ee33VD.3 . . . . . . 7 (𝜃 → (𝜏𝜂))
42, 3syl8 76 . . . . . 6 (𝜑 → (𝜓 → (𝜒 → (𝜏𝜂))))
54com4r 94 . . . . 5 (𝜏 → (𝜑 → (𝜓 → (𝜒𝜂))))
61, 5syl8 76 . . . 4 (𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))))
7 pm2.43cbi 42138 . . . . 5 ((𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂)))))) ↔ (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))))
87biimpi 215 . . . 4 ((𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂)))))) → (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))))
96, 8e0a 42392 . . 3 (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂)))))
10 pm2.43cbi 42138 . . . 4 ((𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))) ↔ (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂)))))
1110biimpi 215 . . 3 ((𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))) → (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂)))))
129, 11e0a 42392 . 2 (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))
13 pm2.43cbi 42138 . . 3 ((𝜒 → (𝜑 → (𝜓 → (𝜒𝜂)))) ↔ (𝜑 → (𝜓 → (𝜒𝜂))))
1413biimpi 215 . 2 ((𝜒 → (𝜑 → (𝜓 → (𝜒𝜂)))) → (𝜑 → (𝜓 → (𝜒𝜂))))
1512, 14e0a 42392 1 (𝜑 → (𝜓 → (𝜒𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator