Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com4r | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4r | ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4t 93 | . 2 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
3 | 2 | com4l 92 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com15 101 3expd 1352 mo4 2566 elpwunsn 4619 onint 7640 tfindsg 7707 findsg 7746 tfrlem9 8216 tz7.49 8276 oaordi 8377 odi 8410 nnaordi 8449 nndi 8454 php 8993 phpOLD 9005 fiint 9091 carduni 9739 dfac2b 9886 axcclem 10213 zorn2lem6 10257 zorn2lem7 10258 grur1a 10575 mulcanpi 10656 ltexprlem7 10798 axpre-sup 10925 xrsupsslem 13041 xrinfmsslem 13042 supxrunb1 13053 supxrunb2 13054 mulgnnass 18738 fiinopn 22050 axcont 27344 sumdmdlem 30780 matunitlindflem1 35773 ee33VD 42499 |
Copyright terms: Public domain | W3C validator |