| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4r | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4r | ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4t 93 | . 2 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| 3 | 2 | com4l 92 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com15 101 3expd 1354 mo4 2559 elpwunsn 4638 onint 7730 tfindsg 7801 findsg 7837 tfrlem9 8314 tz7.49 8374 oaordi 8471 odi 8504 nnaordi 8543 nndi 8548 php 9131 fiint 9235 fiintOLD 9236 carduni 9896 dfac2b 10044 axcclem 10370 zorn2lem6 10414 zorn2lem7 10415 grur1a 10732 mulcanpi 10813 ltexprlem7 10955 axpre-sup 11082 xrsupsslem 13227 xrinfmsslem 13228 supxrunb1 13239 supxrunb2 13240 mulgnnass 19006 fiinopn 22804 axcont 28939 sumdmdlem 32380 matunitlindflem1 37595 ee33VD 44852 |
| Copyright terms: Public domain | W3C validator |