| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4r | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4r | ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4t 93 | . 2 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| 3 | 2 | com4l 92 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com15 101 3expd 1354 mo4 2563 elpwunsn 4636 onint 7729 tfindsg 7797 findsg 7833 tfrlem9 8310 tz7.49 8370 oaordi 8467 odi 8500 nnaordi 8539 nndi 8544 php 9123 fiint 9218 carduni 9881 dfac2b 10029 axcclem 10355 zorn2lem6 10399 zorn2lem7 10400 grur1a 10717 mulcanpi 10798 ltexprlem7 10940 axpre-sup 11067 xrsupsslem 13208 xrinfmsslem 13209 supxrunb1 13220 supxrunb2 13221 mulgnnass 19024 fiinopn 22817 axcont 28956 sumdmdlem 32400 matunitlindflem1 37676 ee33VD 44995 |
| Copyright terms: Public domain | W3C validator |