![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > com4r | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4r | ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4t 93 | . 2 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
3 | 2 | com4l 92 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com15 101 3expd 1351 mo4 2558 elpwunsn 4688 onint 7782 tfindsg 7854 findsg 7894 tfrlem9 8389 tz7.49 8449 oaordi 8550 odi 8583 nnaordi 8622 nndi 8627 php 9214 phpOLD 9226 fiint 9328 carduni 9980 dfac2b 10129 axcclem 10456 zorn2lem6 10500 zorn2lem7 10501 grur1a 10818 mulcanpi 10899 ltexprlem7 11041 axpre-sup 11168 xrsupsslem 13292 xrinfmsslem 13293 supxrunb1 13304 supxrunb2 13305 mulgnnass 19027 fiinopn 22625 axcont 28499 sumdmdlem 31936 matunitlindflem1 36789 ee33VD 43944 |
Copyright terms: Public domain | W3C validator |