MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com4r Structured version   Visualization version   GIF version

Theorem com4r 94
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com4r (𝜃 → (𝜑 → (𝜓 → (𝜒𝜏))))

Proof of Theorem com4r
StepHypRef Expression
1 com4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21com4t 93 . 2 (𝜒 → (𝜃 → (𝜑 → (𝜓𝜏))))
32com4l 92 1 (𝜃 → (𝜑 → (𝜓 → (𝜒𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com15  101  3expd  1354  mo4  2561  elpwunsn  4637  onint  7723  tfindsg  7791  findsg  7827  tfrlem9  8304  tz7.49  8364  oaordi  8461  odi  8494  nnaordi  8533  nndi  8538  php  9116  fiint  9211  carduni  9871  dfac2b  10019  axcclem  10345  zorn2lem6  10389  zorn2lem7  10390  grur1a  10707  mulcanpi  10788  ltexprlem7  10930  axpre-sup  11057  xrsupsslem  13203  xrinfmsslem  13204  supxrunb1  13215  supxrunb2  13216  mulgnnass  19019  fiinopn  22814  axcont  28952  sumdmdlem  32393  matunitlindflem1  37655  ee33VD  44910
  Copyright terms: Public domain W3C validator