Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com4r | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4r | ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4t 93 | . 2 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
3 | 2 | com4l 92 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com15 101 3expd 1352 mo4 2564 elpwunsn 4631 onint 7703 tfindsg 7775 findsg 7814 tfrlem9 8286 tz7.49 8346 oaordi 8448 odi 8481 nnaordi 8520 nndi 8525 php 9075 phpOLD 9087 fiint 9189 carduni 9838 dfac2b 9987 axcclem 10314 zorn2lem6 10358 zorn2lem7 10359 grur1a 10676 mulcanpi 10757 ltexprlem7 10899 axpre-sup 11026 xrsupsslem 13142 xrinfmsslem 13143 supxrunb1 13154 supxrunb2 13155 mulgnnass 18834 fiinopn 22156 axcont 27633 sumdmdlem 31068 matunitlindflem1 35886 ee33VD 42829 |
Copyright terms: Public domain | W3C validator |