Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com4r | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4r | ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4t 93 | . 2 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
3 | 2 | com4l 92 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com15 101 3expd 1351 mo4 2566 elpwunsn 4616 onint 7617 tfindsg 7682 findsg 7720 tfrlem9 8187 tz7.49 8246 oaordi 8339 odi 8372 nnaordi 8411 nndi 8416 php 8897 fiint 9021 carduni 9670 dfac2b 9817 axcclem 10144 zorn2lem6 10188 zorn2lem7 10189 grur1a 10506 mulcanpi 10587 ltexprlem7 10729 axpre-sup 10856 xrsupsslem 12970 xrinfmsslem 12971 supxrunb1 12982 supxrunb2 12983 mulgnnass 18653 fiinopn 21958 axcont 27247 sumdmdlem 30681 matunitlindflem1 35700 ee33VD 42388 |
Copyright terms: Public domain | W3C validator |