| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4r | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4r | ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4t 93 | . 2 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| 3 | 2 | com4l 92 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com15 101 3expd 1354 mo4 2561 elpwunsn 4637 onint 7723 tfindsg 7791 findsg 7827 tfrlem9 8304 tz7.49 8364 oaordi 8461 odi 8494 nnaordi 8533 nndi 8538 php 9116 fiint 9211 carduni 9871 dfac2b 10019 axcclem 10345 zorn2lem6 10389 zorn2lem7 10390 grur1a 10707 mulcanpi 10788 ltexprlem7 10930 axpre-sup 11057 xrsupsslem 13203 xrinfmsslem 13204 supxrunb1 13215 supxrunb2 13216 mulgnnass 19019 fiinopn 22814 axcont 28952 sumdmdlem 32393 matunitlindflem1 37655 ee33VD 44910 |
| Copyright terms: Public domain | W3C validator |