![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > com4r | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4r | ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4t 93 | . 2 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
3 | 2 | com4l 92 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com15 101 3expd 1354 mo4 2561 elpwunsn 4688 onint 7778 tfindsg 7850 findsg 7890 tfrlem9 8385 tz7.49 8445 oaordi 8546 odi 8579 nnaordi 8618 nndi 8623 php 9210 phpOLD 9222 fiint 9324 carduni 9976 dfac2b 10125 axcclem 10452 zorn2lem6 10496 zorn2lem7 10497 grur1a 10814 mulcanpi 10895 ltexprlem7 11037 axpre-sup 11164 xrsupsslem 13286 xrinfmsslem 13287 supxrunb1 13298 supxrunb2 13299 mulgnnass 18989 fiinopn 22403 axcont 28234 sumdmdlem 31671 matunitlindflem1 36484 ee33VD 43640 |
Copyright terms: Public domain | W3C validator |