![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > com4r | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4r | ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4t 93 | . 2 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
3 | 2 | com4l 92 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com15 101 3expd 1353 mo4 2569 elpwunsn 4707 onint 7826 tfindsg 7898 findsg 7937 tfrlem9 8441 tz7.49 8501 oaordi 8602 odi 8635 nnaordi 8674 nndi 8679 php 9273 phpOLD 9285 fiint 9394 fiintOLD 9395 carduni 10050 dfac2b 10200 axcclem 10526 zorn2lem6 10570 zorn2lem7 10571 grur1a 10888 mulcanpi 10969 ltexprlem7 11111 axpre-sup 11238 xrsupsslem 13369 xrinfmsslem 13370 supxrunb1 13381 supxrunb2 13382 mulgnnass 19149 fiinopn 22928 axcont 29009 sumdmdlem 32450 matunitlindflem1 37576 ee33VD 44850 |
Copyright terms: Public domain | W3C validator |