| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4r | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4r | ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4t 93 | . 2 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| 3 | 2 | com4l 92 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com15 101 3expd 1354 mo4 2559 elpwunsn 4648 onint 7766 tfindsg 7837 findsg 7873 tfrlem9 8353 tz7.49 8413 oaordi 8510 odi 8543 nnaordi 8582 nndi 8587 php 9171 fiint 9277 fiintOLD 9278 carduni 9934 dfac2b 10084 axcclem 10410 zorn2lem6 10454 zorn2lem7 10455 grur1a 10772 mulcanpi 10853 ltexprlem7 10995 axpre-sup 11122 xrsupsslem 13267 xrinfmsslem 13268 supxrunb1 13279 supxrunb2 13280 mulgnnass 19041 fiinopn 22788 axcont 28903 sumdmdlem 32347 matunitlindflem1 37610 ee33VD 44868 |
| Copyright terms: Public domain | W3C validator |