| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4r | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4r | ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4t 93 | . 2 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| 3 | 2 | com4l 92 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com15 101 3expd 1354 mo4 2560 elpwunsn 4651 onint 7769 tfindsg 7840 findsg 7876 tfrlem9 8356 tz7.49 8416 oaordi 8513 odi 8546 nnaordi 8585 nndi 8590 php 9177 fiint 9284 fiintOLD 9285 carduni 9941 dfac2b 10091 axcclem 10417 zorn2lem6 10461 zorn2lem7 10462 grur1a 10779 mulcanpi 10860 ltexprlem7 11002 axpre-sup 11129 xrsupsslem 13274 xrinfmsslem 13275 supxrunb1 13286 supxrunb2 13287 mulgnnass 19048 fiinopn 22795 axcont 28910 sumdmdlem 32354 matunitlindflem1 37617 ee33VD 44875 |
| Copyright terms: Public domain | W3C validator |