| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4r | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4r | ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4t 93 | . 2 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| 3 | 2 | com4l 92 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com15 101 3expd 1354 mo4 2565 elpwunsn 4660 onint 7784 tfindsg 7856 findsg 7893 tfrlem9 8399 tz7.49 8459 oaordi 8558 odi 8591 nnaordi 8630 nndi 8635 php 9221 phpOLD 9231 fiint 9338 fiintOLD 9339 carduni 9995 dfac2b 10145 axcclem 10471 zorn2lem6 10515 zorn2lem7 10516 grur1a 10833 mulcanpi 10914 ltexprlem7 11056 axpre-sup 11183 xrsupsslem 13323 xrinfmsslem 13324 supxrunb1 13335 supxrunb2 13336 mulgnnass 19092 fiinopn 22839 axcont 28955 sumdmdlem 32399 matunitlindflem1 37640 ee33VD 44903 |
| Copyright terms: Public domain | W3C validator |