Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  truniALTVD Structured version   Visualization version   GIF version

Theorem truniALTVD 41584
Description: The union of a class of transitive sets is transitive. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. truniALT 41247 is truniALTVD 41584 without virtual deductions and was automatically derived from truniALTVD 41584.
1:: (   𝑥𝐴Tr 𝑥   ▶   𝑥𝐴 Tr 𝑥   )
2:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
3:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑧𝑦   )
4:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑦 𝐴   )
5:4: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑞(𝑦𝑞𝑞𝐴)   )
6:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   (𝑦𝑞𝑞𝐴)   )
7:6: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑦𝑞   )
8:6: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑞𝐴   )
9:1,8: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   [𝑞 / 𝑥]Tr 𝑥   )
10:8,9: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   Tr 𝑞   )
11:3,7,10: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑧𝑞   )
12:11,8: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑧 𝐴   )
13:12: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   ((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
14:13: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
15:14: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
16:5,15: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑧 𝐴   )
17:16: (   𝑥𝐴Tr 𝑥   ▶   ((𝑧𝑦 𝑦 𝐴) → 𝑧 𝐴)   )
18:17: (   𝑥𝐴Tr 𝑥    ▶   𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
19:18: (   𝑥𝐴Tr 𝑥   ▶   Tr 𝐴   )
qed:19: (∀𝑥𝐴Tr 𝑥 → Tr 𝐴)
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
truniALTVD (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem truniALTVD
Dummy variables 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn2 41319 . . . . . . . 8 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
2 simpr 488 . . . . . . . 8 ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴)
31, 2e2 41337 . . . . . . 7 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑦 𝐴   )
4 eluni 4803 . . . . . . . 8 (𝑦 𝐴 ↔ ∃𝑞(𝑦𝑞𝑞𝐴))
54biimpi 219 . . . . . . 7 (𝑦 𝐴 → ∃𝑞(𝑦𝑞𝑞𝐴))
63, 5e2 41337 . . . . . 6 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞(𝑦𝑞𝑞𝐴)   )
7 simpl 486 . . . . . . . . . . . 12 ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦)
81, 7e2 41337 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧𝑦   )
9 idn3 41321 . . . . . . . . . . . 12 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   (𝑦𝑞𝑞𝐴)   )
10 simpl 486 . . . . . . . . . . . 12 ((𝑦𝑞𝑞𝐴) → 𝑦𝑞)
119, 10e3 41443 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   𝑦𝑞   )
12 simpr 488 . . . . . . . . . . . . 13 ((𝑦𝑞𝑞𝐴) → 𝑞𝐴)
139, 12e3 41443 . . . . . . . . . . . 12 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   𝑞𝐴   )
14 idn1 41280 . . . . . . . . . . . . 13 (   𝑥𝐴 Tr 𝑥   ▶   𝑥𝐴 Tr 𝑥   )
15 rspsbc 3808 . . . . . . . . . . . . . 14 (𝑞𝐴 → (∀𝑥𝐴 Tr 𝑥[𝑞 / 𝑥]Tr 𝑥))
1615com12 32 . . . . . . . . . . . . 13 (∀𝑥𝐴 Tr 𝑥 → (𝑞𝐴[𝑞 / 𝑥]Tr 𝑥))
1714, 13, 16e13 41454 . . . . . . . . . . . 12 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   [𝑞 / 𝑥]Tr 𝑥   )
18 trsbc 41246 . . . . . . . . . . . . 13 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞))
1918biimpd 232 . . . . . . . . . . . 12 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞))
2013, 17, 19e33 41440 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   Tr 𝑞   )
21 trel 5143 . . . . . . . . . . . 12 (Tr 𝑞 → ((𝑧𝑦𝑦𝑞) → 𝑧𝑞))
2221expdcom 418 . . . . . . . . . . 11 (𝑧𝑦 → (𝑦𝑞 → (Tr 𝑞𝑧𝑞)))
238, 11, 20, 22e233 41471 . . . . . . . . . 10 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   𝑧𝑞   )
24 elunii 4805 . . . . . . . . . . 11 ((𝑧𝑞𝑞𝐴) → 𝑧 𝐴)
2524ex 416 . . . . . . . . . 10 (𝑧𝑞 → (𝑞𝐴𝑧 𝐴))
2623, 13, 25e33 41440 . . . . . . . . 9 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   𝑧 𝐴   )
2726in3 41315 . . . . . . . 8 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   ((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
2827gen21 41325 . . . . . . 7 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
29 19.23v 1943 . . . . . . . 8 (∀𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴) ↔ (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴))
3029biimpi 219 . . . . . . 7 (∀𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴) → (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴))
3128, 30e2 41337 . . . . . 6 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
32 pm2.27 42 . . . . . 6 (∃𝑞(𝑦𝑞𝑞𝐴) → ((∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴) → 𝑧 𝐴))
336, 31, 32e22 41377 . . . . 5 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧 𝐴   )
3433in2 41311 . . . 4 (   𝑥𝐴 Tr 𝑥   ▶   ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
3534gen12 41324 . . 3 (   𝑥𝐴 Tr 𝑥   ▶   𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
36 dftr2 5138 . . . 4 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
3736biimpri 231 . . 3 (∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴) → Tr 𝐴)
3835, 37e1a 41333 . 2 (   𝑥𝐴 Tr 𝑥   ▶   Tr 𝐴   )
3938in1 41277 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536  wex 1781  wcel 2111  wral 3106  [wsbc 3720   cuni 4800  Tr wtr 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-v 3443  df-sbc 3721  df-in 3888  df-ss 3898  df-uni 4801  df-tr 5137  df-vd1 41276  df-vd2 41284  df-vd3 41296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator