Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  truniALTVD Structured version   Visualization version   GIF version

Theorem truniALTVD 42468
Description: The union of a class of transitive sets is transitive. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. truniALT 42131 is truniALTVD 42468 without virtual deductions and was automatically derived from truniALTVD 42468.
1:: (   𝑥𝐴Tr 𝑥   ▶   𝑥𝐴 Tr 𝑥   )
2:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
3:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑧𝑦   )
4:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑦 𝐴   )
5:4: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑞(𝑦𝑞𝑞𝐴)   )
6:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   (𝑦𝑞𝑞𝐴)   )
7:6: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑦𝑞   )
8:6: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑞𝐴   )
9:1,8: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   [𝑞 / 𝑥]Tr 𝑥   )
10:8,9: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   Tr 𝑞   )
11:3,7,10: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑧𝑞   )
12:11,8: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑧 𝐴   )
13:12: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   ((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
14:13: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
15:14: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
16:5,15: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑧 𝐴   )
17:16: (   𝑥𝐴Tr 𝑥   ▶   ((𝑧𝑦 𝑦 𝐴) → 𝑧 𝐴)   )
18:17: (   𝑥𝐴Tr 𝑥    ▶   𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
19:18: (   𝑥𝐴Tr 𝑥   ▶   Tr 𝐴   )
qed:19: (∀𝑥𝐴Tr 𝑥 → Tr 𝐴)
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
truniALTVD (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem truniALTVD
Dummy variables 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn2 42203 . . . . . . . 8 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
2 simpr 485 . . . . . . . 8 ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴)
31, 2e2 42221 . . . . . . 7 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑦 𝐴   )
4 eluni 4844 . . . . . . . 8 (𝑦 𝐴 ↔ ∃𝑞(𝑦𝑞𝑞𝐴))
54biimpi 215 . . . . . . 7 (𝑦 𝐴 → ∃𝑞(𝑦𝑞𝑞𝐴))
63, 5e2 42221 . . . . . 6 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞(𝑦𝑞𝑞𝐴)   )
7 simpl 483 . . . . . . . . . . . 12 ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦)
81, 7e2 42221 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧𝑦   )
9 idn3 42205 . . . . . . . . . . . 12 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   (𝑦𝑞𝑞𝐴)   )
10 simpl 483 . . . . . . . . . . . 12 ((𝑦𝑞𝑞𝐴) → 𝑦𝑞)
119, 10e3 42327 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   𝑦𝑞   )
12 simpr 485 . . . . . . . . . . . . 13 ((𝑦𝑞𝑞𝐴) → 𝑞𝐴)
139, 12e3 42327 . . . . . . . . . . . 12 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   𝑞𝐴   )
14 idn1 42164 . . . . . . . . . . . . 13 (   𝑥𝐴 Tr 𝑥   ▶   𝑥𝐴 Tr 𝑥   )
15 rspsbc 3813 . . . . . . . . . . . . . 14 (𝑞𝐴 → (∀𝑥𝐴 Tr 𝑥[𝑞 / 𝑥]Tr 𝑥))
1615com12 32 . . . . . . . . . . . . 13 (∀𝑥𝐴 Tr 𝑥 → (𝑞𝐴[𝑞 / 𝑥]Tr 𝑥))
1714, 13, 16e13 42338 . . . . . . . . . . . 12 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   [𝑞 / 𝑥]Tr 𝑥   )
18 trsbc 42130 . . . . . . . . . . . . 13 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞))
1918biimpd 228 . . . . . . . . . . . 12 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞))
2013, 17, 19e33 42324 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   Tr 𝑞   )
21 trel 5200 . . . . . . . . . . . 12 (Tr 𝑞 → ((𝑧𝑦𝑦𝑞) → 𝑧𝑞))
2221expdcom 415 . . . . . . . . . . 11 (𝑧𝑦 → (𝑦𝑞 → (Tr 𝑞𝑧𝑞)))
238, 11, 20, 22e233 42355 . . . . . . . . . 10 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   𝑧𝑞   )
24 elunii 4846 . . . . . . . . . . 11 ((𝑧𝑞𝑞𝐴) → 𝑧 𝐴)
2524ex 413 . . . . . . . . . 10 (𝑧𝑞 → (𝑞𝐴𝑧 𝐴))
2623, 13, 25e33 42324 . . . . . . . . 9 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   (𝑦𝑞𝑞𝐴)   ▶   𝑧 𝐴   )
2726in3 42199 . . . . . . . 8 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   ((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
2827gen21 42209 . . . . . . 7 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
29 19.23v 1945 . . . . . . . 8 (∀𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴) ↔ (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴))
3029biimpi 215 . . . . . . 7 (∀𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴) → (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴))
3128, 30e2 42221 . . . . . 6 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
32 pm2.27 42 . . . . . 6 (∃𝑞(𝑦𝑞𝑞𝐴) → ((∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴) → 𝑧 𝐴))
336, 31, 32e22 42261 . . . . 5 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧 𝐴   )
3433in2 42195 . . . 4 (   𝑥𝐴 Tr 𝑥   ▶   ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
3534gen12 42208 . . 3 (   𝑥𝐴 Tr 𝑥   ▶   𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
36 dftr2 5195 . . . 4 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
3736biimpri 227 . . 3 (∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴) → Tr 𝐴)
3835, 37e1a 42217 . 2 (   𝑥𝐴 Tr 𝑥   ▶   Tr 𝐴   )
3938in1 42161 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wex 1782  wcel 2106  wral 3064  [wsbc 3717   cuni 4841  Tr wtr 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-v 3433  df-sbc 3718  df-in 3895  df-ss 3905  df-uni 4842  df-tr 5194  df-vd1 42160  df-vd2 42168  df-vd3 42180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator