MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnelne1 Structured version   Visualization version   GIF version

Theorem elnelne1 3133
Description: Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne1 ((𝐴𝐵𝐴𝐶) → 𝐵𝐶)

Proof of Theorem elnelne1
StepHypRef Expression
1 df-nel 3124 . 2 (𝐴𝐶 ↔ ¬ 𝐴𝐶)
2 nelne1 3113 . 2 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)
31, 2sylan2b 595 1 ((𝐴𝐵𝐴𝐶) → 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wcel 2110  wne 3016  wnel 3123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1777  df-cleq 2814  df-clel 2893  df-ne 3017  df-nel 3124
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator