![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnelne1 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
elnelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∉ 𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3044 | . 2 ⊢ (𝐴 ∉ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶) | |
2 | nelne1 3036 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) | |
3 | 1, 2 | sylan2b 592 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∉ 𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∈ wcel 2098 ≠ wne 2937 ∉ wnel 3043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-cleq 2720 df-clel 2806 df-ne 2938 df-nel 3044 |
This theorem is referenced by: sticksstones1 41650 |
Copyright terms: Public domain | W3C validator |