Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones1 Structured version   Visualization version   GIF version

Theorem sticksstones1 41749
Description: Different strictly monotone functions have different ranges. (Contributed by metakunt, 27-Sep-2024.)
Hypotheses
Ref Expression
sticksstones1.1 (𝜑𝑁 ∈ ℕ0)
sticksstones1.2 (𝜑𝐾 ∈ ℕ0)
sticksstones1.3 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
sticksstones1.4 (𝜑𝑋𝐴)
sticksstones1.5 (𝜑𝑌𝐴)
sticksstones1.6 (𝜑𝑋𝑌)
sticksstones1.7 𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < )
Assertion
Ref Expression
sticksstones1 (𝜑 → ran 𝑋 ≠ ran 𝑌)
Distinct variable groups:   𝐴,𝑓   𝑥,𝐼,𝑦   𝑧,𝐼   𝑓,𝐾,𝑥,𝑦   𝑧,𝐾   𝑓,𝑁   𝑓,𝑋,𝑥,𝑦   𝑧,𝑋   𝑓,𝑌,𝑥,𝑦   𝑧,𝑌   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)   𝐼(𝑓)   𝑁(𝑥,𝑦,𝑧)

Proof of Theorem sticksstones1
Dummy variables 𝑗 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones1.7 . . . . . 6 𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < )
21a1i 11 . . . . 5 (𝜑𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ))
3 ltso 11326 . . . . . . 7 < Or ℝ
43a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
5 fzfid 13974 . . . . . . . 8 (𝜑 → (1...𝐾) ∈ Fin)
6 ssrab2 4073 . . . . . . . . 9 {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ (1...𝐾)
76a1i 11 . . . . . . . 8 (𝜑 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ (1...𝐾))
8 ssfi 9198 . . . . . . . 8 (((1...𝐾) ∈ Fin ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ (1...𝐾)) → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin)
95, 7, 8syl2anc 582 . . . . . . 7 (𝜑 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin)
10 sticksstones1.6 . . . . . . . 8 (𝜑𝑋𝑌)
11 rabeq0 4386 . . . . . . . . . . . . 13 ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} = ∅ ↔ ∀𝑧 ∈ (1...𝐾) ¬ (𝑋𝑧) ≠ (𝑌𝑧))
12 nne 2933 . . . . . . . . . . . . . 14 (¬ (𝑋𝑧) ≠ (𝑌𝑧) ↔ (𝑋𝑧) = (𝑌𝑧))
1312ralbii 3082 . . . . . . . . . . . . 13 (∀𝑧 ∈ (1...𝐾) ¬ (𝑋𝑧) ≠ (𝑌𝑧) ↔ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧))
1411, 13bitri 274 . . . . . . . . . . . 12 ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} = ∅ ↔ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧))
15 feq1 6704 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑋 → (𝑓:(1...𝐾)⟶(1...𝑁) ↔ 𝑋:(1...𝐾)⟶(1...𝑁)))
16 fveq1 6895 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑋 → (𝑓𝑥) = (𝑋𝑥))
17 fveq1 6895 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑋 → (𝑓𝑦) = (𝑋𝑦))
1816, 17breq12d 5162 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑋 → ((𝑓𝑥) < (𝑓𝑦) ↔ (𝑋𝑥) < (𝑋𝑦)))
1918imbi2d 339 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑋 → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦))))
20192ralbidv 3208 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑋 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦))))
2115, 20anbi12d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑋 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ (𝑋:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))))
22 sticksstones1.3 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
23 eqabb 2865 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ ∀𝑓(𝑓𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))))
2422, 23mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓(𝑓𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
2524spi 2172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
2625biimpi 215 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝐴 → (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
2726adantl 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓𝐴) → (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
2827ralrimiva 3135 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑓𝐴 (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
29 sticksstones1.4 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋𝐴)
3021, 28, 29rspcdva 3607 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦))))
3130simpld 493 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋:(1...𝐾)⟶(1...𝑁))
3231ffnd 6724 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 Fn (1...𝐾))
3332adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → 𝑋 Fn (1...𝐾))
34 sticksstones1.5 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌𝐴)
35 feq1 6704 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑌 → (𝑓:(1...𝐾)⟶(1...𝑁) ↔ 𝑌:(1...𝐾)⟶(1...𝑁)))
36 fveq1 6895 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑌 → (𝑓𝑥) = (𝑌𝑥))
37 fveq1 6895 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑌 → (𝑓𝑦) = (𝑌𝑦))
3836, 37breq12d 5162 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑌 → ((𝑓𝑥) < (𝑓𝑦) ↔ (𝑌𝑥) < (𝑌𝑦)))
3938imbi2d 339 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑌 → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
40392ralbidv 3208 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑌 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
4135, 40anbi12d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑌 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ (𝑌:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))))
4241, 28, 34rspcdva 3607 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
4342adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑌𝐴) → (𝑌:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
4434, 43mpdan 685 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑌:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
4544simpld 493 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌:(1...𝐾)⟶(1...𝑁))
4645ffnd 6724 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 Fn (1...𝐾))
4746adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → 𝑌 Fn (1...𝐾))
48 eqfnfv 7039 . . . . . . . . . . . . . . . 16 ((𝑋 Fn (1...𝐾) ∧ 𝑌 Fn (1...𝐾)) → (𝑋 = 𝑌 ↔ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)))
4933, 47, 48syl2anc 582 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → (𝑋 = 𝑌 ↔ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)))
5049bicomd 222 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → (∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧) ↔ 𝑋 = 𝑌))
5150biimpd 228 . . . . . . . . . . . . 13 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → (∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧) → 𝑋 = 𝑌))
5251syldbl2 839 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → 𝑋 = 𝑌)
5314, 52sylan2b 592 . . . . . . . . . . 11 ((𝜑 ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} = ∅) → 𝑋 = 𝑌)
5453ex 411 . . . . . . . . . 10 (𝜑 → ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} = ∅ → 𝑋 = 𝑌))
5554necon3d 2950 . . . . . . . . 9 (𝜑 → (𝑋𝑌 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅))
5655imp 405 . . . . . . . 8 ((𝜑𝑋𝑌) → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅)
5710, 56mpdan 685 . . . . . . 7 (𝜑 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅)
58 fz1ssnn 13567 . . . . . . . . . 10 (1...𝐾) ⊆ ℕ
5958a1i 11 . . . . . . . . 9 (𝜑 → (1...𝐾) ⊆ ℕ)
60 nnssre 12249 . . . . . . . . . 10 ℕ ⊆ ℝ
6160a1i 11 . . . . . . . . 9 (𝜑 → ℕ ⊆ ℝ)
6259, 61sstrd 3987 . . . . . . . 8 (𝜑 → (1...𝐾) ⊆ ℝ)
637, 62sstrd 3987 . . . . . . 7 (𝜑 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ)
649, 57, 633jca 1125 . . . . . 6 (𝜑 → ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅ ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ))
65 fiinfcl 9526 . . . . . 6 (( < Or ℝ ∧ ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅ ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ)) → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)})
664, 64, 65syl2anc 582 . . . . 5 (𝜑 → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)})
672, 66eqeltrd 2825 . . . 4 (𝜑𝐼 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)})
687, 66sseldd 3977 . . . . . 6 (𝜑 → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ∈ (1...𝐾))
692eleq1d 2810 . . . . . 6 (𝜑 → (𝐼 ∈ (1...𝐾) ↔ inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ∈ (1...𝐾)))
7068, 69mpbird 256 . . . . 5 (𝜑𝐼 ∈ (1...𝐾))
71 fveq2 6896 . . . . . . 7 (𝑧 = 𝐼 → (𝑋𝑧) = (𝑋𝐼))
72 fveq2 6896 . . . . . . 7 (𝑧 = 𝐼 → (𝑌𝑧) = (𝑌𝐼))
7371, 72neeq12d 2991 . . . . . 6 (𝑧 = 𝐼 → ((𝑋𝑧) ≠ (𝑌𝑧) ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
7473elrab3 3680 . . . . 5 (𝐼 ∈ (1...𝐾) → (𝐼 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
7570, 74syl 17 . . . 4 (𝜑 → (𝐼 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
7667, 75mpbid 231 . . 3 (𝜑 → (𝑋𝐼) ≠ (𝑌𝐼))
77 nfv 1909 . . . . . 6 𝑎𝜑
78 nfcv 2891 . . . . . 6 𝑎(1...𝑁)
79 nfcv 2891 . . . . . 6 𝑎
80 elfznn 13565 . . . . . . . . 9 (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ)
8180adantl 480 . . . . . . . 8 ((𝜑𝑎 ∈ (1...𝑁)) → 𝑎 ∈ ℕ)
82 nnre 12252 . . . . . . . 8 (𝑎 ∈ ℕ → 𝑎 ∈ ℝ)
8381, 82syl 17 . . . . . . 7 ((𝜑𝑎 ∈ (1...𝑁)) → 𝑎 ∈ ℝ)
8483ex 411 . . . . . 6 (𝜑 → (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℝ))
8577, 78, 79, 84ssrd 3981 . . . . 5 (𝜑 → (1...𝑁) ⊆ ℝ)
8631, 70ffvelcdmd 7094 . . . . 5 (𝜑 → (𝑋𝐼) ∈ (1...𝑁))
8785, 86sseldd 3977 . . . 4 (𝜑 → (𝑋𝐼) ∈ ℝ)
8845, 70ffvelcdmd 7094 . . . . 5 (𝜑 → (𝑌𝐼) ∈ (1...𝑁))
8985, 88sseldd 3977 . . . 4 (𝜑 → (𝑌𝐼) ∈ ℝ)
90 lttri2 11328 . . . 4 (((𝑋𝐼) ∈ ℝ ∧ (𝑌𝐼) ∈ ℝ) → ((𝑋𝐼) ≠ (𝑌𝐼) ↔ ((𝑋𝐼) < (𝑌𝐼) ∨ (𝑌𝐼) < (𝑋𝐼))))
9187, 89, 90syl2anc 582 . . 3 (𝜑 → ((𝑋𝐼) ≠ (𝑌𝐼) ↔ ((𝑋𝐼) < (𝑌𝐼) ∨ (𝑌𝐼) < (𝑋𝐼))))
9276, 91mpbid 231 . 2 (𝜑 → ((𝑋𝐼) < (𝑌𝐼) ∨ (𝑌𝐼) < (𝑋𝐼)))
9331ffund 6727 . . . . . 6 (𝜑 → Fun 𝑋)
9493adantr 479 . . . . 5 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → Fun 𝑋)
9531fdmd 6733 . . . . . . 7 (𝜑 → dom 𝑋 = (1...𝐾))
9670, 95eleqtrrd 2828 . . . . . 6 (𝜑𝐼 ∈ dom 𝑋)
9796adantr 479 . . . . 5 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → 𝐼 ∈ dom 𝑋)
98 fvelrn 7085 . . . . 5 ((Fun 𝑋𝐼 ∈ dom 𝑋) → (𝑋𝐼) ∈ ran 𝑋)
9994, 97, 98syl2anc 582 . . . 4 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → (𝑋𝐼) ∈ ran 𝑋)
100 elfznn 13565 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝐾) → 𝑗 ∈ ℕ)
1011003ad2ant3 1132 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℕ)
102101nnred 12260 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℝ)
10362, 70sseldd 3977 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℝ)
1041033ad2ant1 1130 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝐼 ∈ ℝ)
105102, 104lttri4d 11387 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 < 𝐼𝑗 = 𝐼𝐼 < 𝑗))
106453ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑌:(1...𝐾)⟶(1...𝑁))
107 simp3 1135 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (1...𝐾))
108106, 107ffvelcdmd 7094 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝑗) ∈ (1...𝑁))
109 fz1ssnn 13567 . . . . . . . . . . . . . . 15 (1...𝑁) ⊆ ℕ
110109sseli 3972 . . . . . . . . . . . . . 14 ((𝑌𝑗) ∈ (1...𝑁) → (𝑌𝑗) ∈ ℕ)
111 nnre 12252 . . . . . . . . . . . . . 14 ((𝑌𝑗) ∈ ℕ → (𝑌𝑗) ∈ ℝ)
112110, 111syl 17 . . . . . . . . . . . . 13 ((𝑌𝑗) ∈ (1...𝑁) → (𝑌𝑗) ∈ ℝ)
113108, 112syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝑗) ∈ ℝ)
114113adantr 479 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) ∈ ℝ)
11530simprd 494 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
1161153ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
117116adantr 479 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
118 simpl3 1190 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → 𝑗 ∈ (1...𝐾))
119703ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝐼 ∈ (1...𝐾))
120119adantr 479 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → 𝐼 ∈ (1...𝐾))
121 breq1 5152 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑗 → (𝑥 < 𝑦𝑗 < 𝑦))
122 fveq2 6896 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑗 → (𝑋𝑥) = (𝑋𝑗))
123122breq1d 5159 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑗 → ((𝑋𝑥) < (𝑋𝑦) ↔ (𝑋𝑗) < (𝑋𝑦)))
124121, 123imbi12d 343 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑗 → ((𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) ↔ (𝑗 < 𝑦 → (𝑋𝑗) < (𝑋𝑦))))
125 breq2 5153 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐼 → (𝑗 < 𝑦𝑗 < 𝐼))
126 fveq2 6896 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐼 → (𝑋𝑦) = (𝑋𝐼))
127126breq2d 5161 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐼 → ((𝑋𝑗) < (𝑋𝑦) ↔ (𝑋𝑗) < (𝑋𝐼)))
128125, 127imbi12d 343 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐼 → ((𝑗 < 𝑦 → (𝑋𝑗) < (𝑋𝑦)) ↔ (𝑗 < 𝐼 → (𝑋𝑗) < (𝑋𝐼))))
129124, 128rspc2v 3617 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (1...𝐾) ∧ 𝐼 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) → (𝑗 < 𝐼 → (𝑋𝑗) < (𝑋𝐼))))
130118, 120, 129syl2anc 582 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) → (𝑗 < 𝐼 → (𝑋𝑗) < (𝑋𝐼))))
131117, 130mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑗 < 𝐼 → (𝑋𝑗) < (𝑋𝐼)))
132131syldbl2 839 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) < (𝑋𝐼))
133 simp2 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝑗 ∈ (1...𝐾))
134 simp3 1135 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝑗 < 𝐼)
1351003ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝑗 ∈ ℕ)
136135nnred 12260 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝑗 ∈ ℝ)
1371033ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝐼 ∈ ℝ)
138136, 137ltnled 11393 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑗 < 𝐼 ↔ ¬ 𝐼𝑗))
139134, 138mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → ¬ 𝐼𝑗)
140633ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ)
14193ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin)
142 infrefilb 12233 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗)
1431423expia 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin) → (𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗))
144140, 141, 143syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗))
145144imp 405 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗)
1461a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → 𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ))
147146breq1d 5159 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → (𝐼𝑗 ↔ inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗))
148145, 147mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → 𝐼𝑗)
149148ex 411 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} → 𝐼𝑗))
150149con3d 152 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (¬ 𝐼𝑗 → ¬ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}))
151139, 150mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → ¬ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)})
152 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧𝑗
153 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧(1...𝐾)
154 nfv 1909 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧(𝑋𝑗) ≠ (𝑌𝑗)
155 fveq2 6896 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑗 → (𝑋𝑧) = (𝑋𝑗))
156 fveq2 6896 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑗 → (𝑌𝑧) = (𝑌𝑗))
157155, 156neeq12d 2991 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑗 → ((𝑋𝑧) ≠ (𝑌𝑧) ↔ (𝑋𝑗) ≠ (𝑌𝑗)))
158152, 153, 154, 157elrabf 3675 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ (𝑗 ∈ (1...𝐾) ∧ (𝑋𝑗) ≠ (𝑌𝑗)))
159158notbii 319 . . . . . . . . . . . . . . . . . . . . . 22 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ ¬ (𝑗 ∈ (1...𝐾) ∧ (𝑋𝑗) ≠ (𝑌𝑗)))
160 ianor 979 . . . . . . . . . . . . . . . . . . . . . 22 (¬ (𝑗 ∈ (1...𝐾) ∧ (𝑋𝑗) ≠ (𝑌𝑗)) ↔ (¬ 𝑗 ∈ (1...𝐾) ∨ ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
161159, 160bitri 274 . . . . . . . . . . . . . . . . . . . . 21 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ (¬ 𝑗 ∈ (1...𝐾) ∨ ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
162151, 161sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (¬ 𝑗 ∈ (1...𝐾) ∨ ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
163 imor 851 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (1...𝐾) → ¬ (𝑋𝑗) ≠ (𝑌𝑗)) ↔ (¬ 𝑗 ∈ (1...𝐾) ∨ ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
164162, 163sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑗 ∈ (1...𝐾) → ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
165164imp 405 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ¬ (𝑋𝑗) ≠ (𝑌𝑗))
166 nne 2933 . . . . . . . . . . . . . . . . . 18 (¬ (𝑋𝑗) ≠ (𝑌𝑗) ↔ (𝑋𝑗) = (𝑌𝑗))
167165, 166sylib 217 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) = (𝑌𝑗))
168133, 167mpdan 685 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑋𝑗) = (𝑌𝑗))
1691683expa 1115 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) = (𝑌𝑗))
1701693adantl2 1164 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) = (𝑌𝑗))
171170eqcomd 2731 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) = (𝑋𝑗))
172171breq1d 5159 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → ((𝑌𝑗) < (𝑋𝐼) ↔ (𝑋𝑗) < (𝑋𝐼)))
173132, 172mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) < (𝑋𝐼))
174114, 173ltned 11382 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) ≠ (𝑋𝐼))
175763ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝐼) ≠ (𝑌𝐼))
176175adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑋𝐼) ≠ (𝑌𝐼))
177176necomd 2985 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝐼) ≠ (𝑋𝐼))
178 fveq2 6896 . . . . . . . . . . . . 13 (𝑗 = 𝐼 → (𝑌𝑗) = (𝑌𝐼))
179178neeq1d 2989 . . . . . . . . . . . 12 (𝑗 = 𝐼 → ((𝑌𝑗) ≠ (𝑋𝐼) ↔ (𝑌𝐼) ≠ (𝑋𝐼)))
180179adantl 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → ((𝑌𝑗) ≠ (𝑋𝐼) ↔ (𝑌𝐼) ≠ (𝑋𝐼)))
181177, 180mpbird 256 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝑗) ≠ (𝑋𝐼))
182873ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝐼) ∈ ℝ)
183182adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) ∈ ℝ)
184893ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝐼) ∈ ℝ)
185184adantr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) ∈ ℝ)
186113adantr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝑗) ∈ ℝ)
187 simpl2 1189 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) < (𝑌𝐼))
18842simprd 494 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
1891883ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
190189adantr 479 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
191119adantr 479 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → 𝐼 ∈ (1...𝐾))
192107adantr 479 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → 𝑗 ∈ (1...𝐾))
193 breq1 5152 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐼 → (𝑥 < 𝑦𝐼 < 𝑦))
194 fveq2 6896 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝐼 → (𝑌𝑥) = (𝑌𝐼))
195194breq1d 5159 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐼 → ((𝑌𝑥) < (𝑌𝑦) ↔ (𝑌𝐼) < (𝑌𝑦)))
196193, 195imbi12d 343 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐼 → ((𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) ↔ (𝐼 < 𝑦 → (𝑌𝐼) < (𝑌𝑦))))
197 breq2 5153 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑗 → (𝐼 < 𝑦𝐼 < 𝑗))
198 fveq2 6896 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑗 → (𝑌𝑦) = (𝑌𝑗))
199198breq2d 5161 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑗 → ((𝑌𝐼) < (𝑌𝑦) ↔ (𝑌𝐼) < (𝑌𝑗)))
200197, 199imbi12d 343 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑗 → ((𝐼 < 𝑦 → (𝑌𝐼) < (𝑌𝑦)) ↔ (𝐼 < 𝑗 → (𝑌𝐼) < (𝑌𝑗))))
201196, 200rspc2v 3617 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (1...𝐾) ∧ 𝑗 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) → (𝐼 < 𝑗 → (𝑌𝐼) < (𝑌𝑗))))
202191, 192, 201syl2anc 582 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) → (𝐼 < 𝑗 → (𝑌𝐼) < (𝑌𝑗))))
203190, 202mpd 15 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝐼 < 𝑗 → (𝑌𝐼) < (𝑌𝑗)))
204203syldbl2 839 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) < (𝑌𝑗))
205183, 185, 186, 187, 204lttrd 11407 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) < (𝑌𝑗))
206183, 205ltned 11382 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) ≠ (𝑌𝑗))
207206necomd 2985 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝑗) ≠ (𝑋𝐼))
208174, 181, 2073jaodan 1427 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ (𝑗 < 𝐼𝑗 = 𝐼𝐼 < 𝑗)) → (𝑌𝑗) ≠ (𝑋𝐼))
209105, 208mpdan 685 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝑗) ≠ (𝑋𝐼))
2102093expa 1115 . . . . . . 7 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝑗) ≠ (𝑋𝐼))
211210neneqd 2934 . . . . . 6 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) ∧ 𝑗 ∈ (1...𝐾)) → ¬ (𝑌𝑗) = (𝑋𝐼))
212211ralrimiva 3135 . . . . 5 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → ∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼))
213 ralnex 3061 . . . . . . . 8 (∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼) ↔ ¬ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼))
214213a1i 11 . . . . . . 7 (𝜑 → (∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼) ↔ ¬ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼)))
215 nnel 3045 . . . . . . . . . 10 (¬ (𝑋𝐼) ∉ ran 𝑌 ↔ (𝑋𝐼) ∈ ran 𝑌)
216215a1i 11 . . . . . . . . 9 (𝜑 → (¬ (𝑋𝐼) ∉ ran 𝑌 ↔ (𝑋𝐼) ∈ ran 𝑌))
217 fvelrnb 6958 . . . . . . . . . 10 (𝑌 Fn (1...𝐾) → ((𝑋𝐼) ∈ ran 𝑌 ↔ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼)))
21846, 217syl 17 . . . . . . . . 9 (𝜑 → ((𝑋𝐼) ∈ ran 𝑌 ↔ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼)))
219216, 218bitrd 278 . . . . . . . 8 (𝜑 → (¬ (𝑋𝐼) ∉ ran 𝑌 ↔ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼)))
220219con1bid 354 . . . . . . 7 (𝜑 → (¬ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼) ↔ (𝑋𝐼) ∉ ran 𝑌))
221214, 220bitrd 278 . . . . . 6 (𝜑 → (∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼) ↔ (𝑋𝐼) ∉ ran 𝑌))
222221adantr 479 . . . . 5 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → (∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼) ↔ (𝑋𝐼) ∉ ran 𝑌))
223212, 222mpbid 231 . . . 4 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → (𝑋𝐼) ∉ ran 𝑌)
224 elnelne1 3046 . . . 4 (((𝑋𝐼) ∈ ran 𝑋 ∧ (𝑋𝐼) ∉ ran 𝑌) → ran 𝑋 ≠ ran 𝑌)
22599, 223, 224syl2anc 582 . . 3 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → ran 𝑋 ≠ ran 𝑌)
22645ffund 6727 . . . . . 6 (𝜑 → Fun 𝑌)
227226adantr 479 . . . . 5 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → Fun 𝑌)
22845fdmd 6733 . . . . . . 7 (𝜑 → dom 𝑌 = (1...𝐾))
22970, 228eleqtrrd 2828 . . . . . 6 (𝜑𝐼 ∈ dom 𝑌)
230229adantr 479 . . . . 5 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → 𝐼 ∈ dom 𝑌)
231 fvelrn 7085 . . . . 5 ((Fun 𝑌𝐼 ∈ dom 𝑌) → (𝑌𝐼) ∈ ran 𝑌)
232227, 230, 231syl2anc 582 . . . 4 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → (𝑌𝐼) ∈ ran 𝑌)
2331003ad2ant3 1132 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℕ)
234233nnred 12260 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℝ)
2351033ad2ant1 1130 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝐼 ∈ ℝ)
236234, 235lttri4d 11387 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 < 𝐼𝑗 = 𝐼𝐼 < 𝑗))
237313ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑋:(1...𝐾)⟶(1...𝑁))
238 simp3 1135 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (1...𝐾))
239237, 238ffvelcdmd 7094 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ∈ (1...𝑁))
240109sseli 3972 . . . . . . . . . . . . . 14 ((𝑋𝑗) ∈ (1...𝑁) → (𝑋𝑗) ∈ ℕ)
241239, 240syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ∈ ℕ)
242241nnred 12260 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ∈ ℝ)
243242adantr 479 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) ∈ ℝ)
2441883ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
245244adantr 479 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
246 simpl3 1190 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → 𝑗 ∈ (1...𝐾))
247703ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝐼 ∈ (1...𝐾))
248247adantr 479 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → 𝐼 ∈ (1...𝐾))
249 fveq2 6896 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑗 → (𝑌𝑥) = (𝑌𝑗))
250249breq1d 5159 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑗 → ((𝑌𝑥) < (𝑌𝑦) ↔ (𝑌𝑗) < (𝑌𝑦)))
251121, 250imbi12d 343 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑗 → ((𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) ↔ (𝑗 < 𝑦 → (𝑌𝑗) < (𝑌𝑦))))
252 fveq2 6896 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐼 → (𝑌𝑦) = (𝑌𝐼))
253252breq2d 5161 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐼 → ((𝑌𝑗) < (𝑌𝑦) ↔ (𝑌𝑗) < (𝑌𝐼)))
254125, 253imbi12d 343 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐼 → ((𝑗 < 𝑦 → (𝑌𝑗) < (𝑌𝑦)) ↔ (𝑗 < 𝐼 → (𝑌𝑗) < (𝑌𝐼))))
255251, 254rspc2v 3617 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (1...𝐾) ∧ 𝐼 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) → (𝑗 < 𝐼 → (𝑌𝑗) < (𝑌𝐼))))
256246, 248, 255syl2anc 582 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) → (𝑗 < 𝐼 → (𝑌𝑗) < (𝑌𝐼))))
257245, 256mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑗 < 𝐼 → (𝑌𝑗) < (𝑌𝐼)))
258257syldbl2 839 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) < (𝑌𝐼))
2591693adantl2 1164 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) = (𝑌𝑗))
260259breq1d 5159 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → ((𝑋𝑗) < (𝑌𝐼) ↔ (𝑌𝑗) < (𝑌𝐼)))
261258, 260mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) < (𝑌𝐼))
262243, 261ltned 11382 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) ≠ (𝑌𝐼))
263893ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝐼) ∈ ℝ)
264263adantr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝐼) ∈ ℝ)
265 simpl2 1189 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝐼) < (𝑋𝐼))
266264, 265ltned 11382 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝐼) ≠ (𝑋𝐼))
267266necomd 2985 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑋𝐼) ≠ (𝑌𝐼))
268 fveq2 6896 . . . . . . . . . . . . 13 (𝑗 = 𝐼 → (𝑋𝑗) = (𝑋𝐼))
269268neeq1d 2989 . . . . . . . . . . . 12 (𝑗 = 𝐼 → ((𝑋𝑗) ≠ (𝑌𝐼) ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
270269adantl 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → ((𝑋𝑗) ≠ (𝑌𝐼) ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
271267, 270mpbird 256 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑋𝑗) ≠ (𝑌𝐼))
272263adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) ∈ ℝ)
273873ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝐼) ∈ ℝ)
274273adantr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) ∈ ℝ)
275242adantr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝑗) ∈ ℝ)
276 simpl2 1189 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) < (𝑋𝐼))
2771153ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
278277adantr 479 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
279247adantr 479 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → 𝐼 ∈ (1...𝐾))
280238adantr 479 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → 𝑗 ∈ (1...𝐾))
281 fveq2 6896 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝐼 → (𝑋𝑥) = (𝑋𝐼))
282281breq1d 5159 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐼 → ((𝑋𝑥) < (𝑋𝑦) ↔ (𝑋𝐼) < (𝑋𝑦)))
283193, 282imbi12d 343 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐼 → ((𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) ↔ (𝐼 < 𝑦 → (𝑋𝐼) < (𝑋𝑦))))
284 fveq2 6896 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑗 → (𝑋𝑦) = (𝑋𝑗))
285284breq2d 5161 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑗 → ((𝑋𝐼) < (𝑋𝑦) ↔ (𝑋𝐼) < (𝑋𝑗)))
286197, 285imbi12d 343 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑗 → ((𝐼 < 𝑦 → (𝑋𝐼) < (𝑋𝑦)) ↔ (𝐼 < 𝑗 → (𝑋𝐼) < (𝑋𝑗))))
287283, 286rspc2v 3617 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (1...𝐾) ∧ 𝑗 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) → (𝐼 < 𝑗 → (𝑋𝐼) < (𝑋𝑗))))
288279, 280, 287syl2anc 582 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) → (𝐼 < 𝑗 → (𝑋𝐼) < (𝑋𝑗))))
289278, 288mpd 15 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝐼 < 𝑗 → (𝑋𝐼) < (𝑋𝑗)))
290289syldbl2 839 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) < (𝑋𝑗))
291272, 274, 275, 276, 290lttrd 11407 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) < (𝑋𝑗))
292272, 291ltned 11382 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) ≠ (𝑋𝑗))
293292necomd 2985 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝑗) ≠ (𝑌𝐼))
294262, 271, 2933jaodan 1427 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ (𝑗 < 𝐼𝑗 = 𝐼𝐼 < 𝑗)) → (𝑋𝑗) ≠ (𝑌𝐼))
295236, 294mpdan 685 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ≠ (𝑌𝐼))
2962953expa 1115 . . . . . . 7 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ≠ (𝑌𝐼))
297296neneqd 2934 . . . . . 6 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) ∧ 𝑗 ∈ (1...𝐾)) → ¬ (𝑋𝑗) = (𝑌𝐼))
298297ralrimiva 3135 . . . . 5 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → ∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼))
299 ralnex 3061 . . . . . . . 8 (∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼) ↔ ¬ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼))
300299a1i 11 . . . . . . 7 (𝜑 → (∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼) ↔ ¬ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼)))
301 nnel 3045 . . . . . . . . . 10 (¬ (𝑌𝐼) ∉ ran 𝑋 ↔ (𝑌𝐼) ∈ ran 𝑋)
302301a1i 11 . . . . . . . . 9 (𝜑 → (¬ (𝑌𝐼) ∉ ran 𝑋 ↔ (𝑌𝐼) ∈ ran 𝑋))
303 fvelrnb 6958 . . . . . . . . . 10 (𝑋 Fn (1...𝐾) → ((𝑌𝐼) ∈ ran 𝑋 ↔ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼)))
30432, 303syl 17 . . . . . . . . 9 (𝜑 → ((𝑌𝐼) ∈ ran 𝑋 ↔ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼)))
305302, 304bitrd 278 . . . . . . . 8 (𝜑 → (¬ (𝑌𝐼) ∉ ran 𝑋 ↔ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼)))
306305con1bid 354 . . . . . . 7 (𝜑 → (¬ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼) ↔ (𝑌𝐼) ∉ ran 𝑋))
307300, 306bitrd 278 . . . . . 6 (𝜑 → (∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼) ↔ (𝑌𝐼) ∉ ran 𝑋))
308307adantr 479 . . . . 5 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → (∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼) ↔ (𝑌𝐼) ∉ ran 𝑋))
309298, 308mpbid 231 . . . 4 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → (𝑌𝐼) ∉ ran 𝑋)
310 elnelne1 3046 . . . . 5 (((𝑌𝐼) ∈ ran 𝑌 ∧ (𝑌𝐼) ∉ ran 𝑋) → ran 𝑌 ≠ ran 𝑋)
311310necomd 2985 . . . 4 (((𝑌𝐼) ∈ ran 𝑌 ∧ (𝑌𝐼) ∉ ran 𝑋) → ran 𝑋 ≠ ran 𝑌)
312232, 309, 311syl2anc 582 . . 3 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → ran 𝑋 ≠ ran 𝑌)
313225, 312jaodan 955 . 2 ((𝜑 ∧ ((𝑋𝐼) < (𝑌𝐼) ∨ (𝑌𝐼) < (𝑋𝐼))) → ran 𝑋 ≠ ran 𝑌)
31492, 313mpdan 685 1 (𝜑 → ran 𝑋 ≠ ran 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3o 1083  w3a 1084  wal 1531   = wceq 1533  wcel 2098  {cab 2702  wne 2929  wnel 3035  wral 3050  wrex 3059  {crab 3418  wss 3944  c0 4322   class class class wbr 5149   Or wor 5589  dom cdm 5678  ran crn 5679  Fun wfun 6543   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  Fincfn 8964  infcinf 9466  cr 11139  1c1 11141   < clt 11280  cle 11281  cn 12245  0cn0 12505  ...cfz 13519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520
This theorem is referenced by:  sticksstones2  41750
  Copyright terms: Public domain W3C validator