Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones1 Structured version   Visualization version   GIF version

Theorem sticksstones1 40102
Description: Different strictly monotone functions have different ranges. (Contributed by metakunt, 27-Sep-2024.)
Hypotheses
Ref Expression
sticksstones1.1 (𝜑𝑁 ∈ ℕ0)
sticksstones1.2 (𝜑𝐾 ∈ ℕ0)
sticksstones1.3 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
sticksstones1.4 (𝜑𝑋𝐴)
sticksstones1.5 (𝜑𝑌𝐴)
sticksstones1.6 (𝜑𝑋𝑌)
sticksstones1.7 𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < )
Assertion
Ref Expression
sticksstones1 (𝜑 → ran 𝑋 ≠ ran 𝑌)
Distinct variable groups:   𝐴,𝑓   𝑥,𝐼,𝑦   𝑧,𝐼   𝑓,𝐾,𝑥,𝑦   𝑧,𝐾   𝑓,𝑁   𝑓,𝑋,𝑥,𝑦   𝑧,𝑋   𝑓,𝑌,𝑥,𝑦   𝑧,𝑌   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)   𝐼(𝑓)   𝑁(𝑥,𝑦,𝑧)

Proof of Theorem sticksstones1
Dummy variables 𝑗 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones1.7 . . . . . 6 𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < )
21a1i 11 . . . . 5 (𝜑𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ))
3 ltso 11055 . . . . . . 7 < Or ℝ
43a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
5 fzfid 13693 . . . . . . . 8 (𝜑 → (1...𝐾) ∈ Fin)
6 ssrab2 4013 . . . . . . . . 9 {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ (1...𝐾)
76a1i 11 . . . . . . . 8 (𝜑 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ (1...𝐾))
8 ssfi 8956 . . . . . . . 8 (((1...𝐾) ∈ Fin ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ (1...𝐾)) → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin)
95, 7, 8syl2anc 584 . . . . . . 7 (𝜑 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin)
10 sticksstones1.6 . . . . . . . 8 (𝜑𝑋𝑌)
11 rabeq0 4318 . . . . . . . . . . . . 13 ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} = ∅ ↔ ∀𝑧 ∈ (1...𝐾) ¬ (𝑋𝑧) ≠ (𝑌𝑧))
12 nne 2947 . . . . . . . . . . . . . 14 (¬ (𝑋𝑧) ≠ (𝑌𝑧) ↔ (𝑋𝑧) = (𝑌𝑧))
1312ralbii 3092 . . . . . . . . . . . . 13 (∀𝑧 ∈ (1...𝐾) ¬ (𝑋𝑧) ≠ (𝑌𝑧) ↔ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧))
1411, 13bitri 274 . . . . . . . . . . . 12 ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} = ∅ ↔ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧))
15 feq1 6581 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑋 → (𝑓:(1...𝐾)⟶(1...𝑁) ↔ 𝑋:(1...𝐾)⟶(1...𝑁)))
16 fveq1 6773 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑋 → (𝑓𝑥) = (𝑋𝑥))
17 fveq1 6773 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑋 → (𝑓𝑦) = (𝑋𝑦))
1816, 17breq12d 5087 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑋 → ((𝑓𝑥) < (𝑓𝑦) ↔ (𝑋𝑥) < (𝑋𝑦)))
1918imbi2d 341 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑋 → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦))))
20192ralbidv 3129 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑋 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦))))
2115, 20anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑋 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ (𝑋:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))))
22 sticksstones1.3 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
23 abeq2 2872 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ ∀𝑓(𝑓𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))))
2422, 23mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓(𝑓𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
2524spi 2177 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
2625biimpi 215 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝐴 → (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
2726adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓𝐴) → (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
2827ralrimiva 3103 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑓𝐴 (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
29 sticksstones1.4 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋𝐴)
3021, 28, 29rspcdva 3562 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦))))
3130simpld 495 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋:(1...𝐾)⟶(1...𝑁))
3231ffnd 6601 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 Fn (1...𝐾))
3332adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → 𝑋 Fn (1...𝐾))
34 sticksstones1.5 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌𝐴)
35 feq1 6581 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑌 → (𝑓:(1...𝐾)⟶(1...𝑁) ↔ 𝑌:(1...𝐾)⟶(1...𝑁)))
36 fveq1 6773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑌 → (𝑓𝑥) = (𝑌𝑥))
37 fveq1 6773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑌 → (𝑓𝑦) = (𝑌𝑦))
3836, 37breq12d 5087 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑌 → ((𝑓𝑥) < (𝑓𝑦) ↔ (𝑌𝑥) < (𝑌𝑦)))
3938imbi2d 341 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑌 → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
40392ralbidv 3129 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑌 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
4135, 40anbi12d 631 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑌 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ (𝑌:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))))
4241, 28, 34rspcdva 3562 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
4342adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑌𝐴) → (𝑌:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
4434, 43mpdan 684 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑌:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
4544simpld 495 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌:(1...𝐾)⟶(1...𝑁))
4645ffnd 6601 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 Fn (1...𝐾))
4746adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → 𝑌 Fn (1...𝐾))
48 eqfnfv 6909 . . . . . . . . . . . . . . . 16 ((𝑋 Fn (1...𝐾) ∧ 𝑌 Fn (1...𝐾)) → (𝑋 = 𝑌 ↔ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)))
4933, 47, 48syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → (𝑋 = 𝑌 ↔ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)))
5049bicomd 222 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → (∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧) ↔ 𝑋 = 𝑌))
5150biimpd 228 . . . . . . . . . . . . 13 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → (∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧) → 𝑋 = 𝑌))
5251syldbl2 838 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → 𝑋 = 𝑌)
5314, 52sylan2b 594 . . . . . . . . . . 11 ((𝜑 ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} = ∅) → 𝑋 = 𝑌)
5453ex 413 . . . . . . . . . 10 (𝜑 → ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} = ∅ → 𝑋 = 𝑌))
5554necon3d 2964 . . . . . . . . 9 (𝜑 → (𝑋𝑌 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅))
5655imp 407 . . . . . . . 8 ((𝜑𝑋𝑌) → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅)
5710, 56mpdan 684 . . . . . . 7 (𝜑 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅)
58 fz1ssnn 13287 . . . . . . . . . 10 (1...𝐾) ⊆ ℕ
5958a1i 11 . . . . . . . . 9 (𝜑 → (1...𝐾) ⊆ ℕ)
60 nnssre 11977 . . . . . . . . . 10 ℕ ⊆ ℝ
6160a1i 11 . . . . . . . . 9 (𝜑 → ℕ ⊆ ℝ)
6259, 61sstrd 3931 . . . . . . . 8 (𝜑 → (1...𝐾) ⊆ ℝ)
637, 62sstrd 3931 . . . . . . 7 (𝜑 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ)
649, 57, 633jca 1127 . . . . . 6 (𝜑 → ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅ ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ))
65 fiinfcl 9260 . . . . . 6 (( < Or ℝ ∧ ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅ ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ)) → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)})
664, 64, 65syl2anc 584 . . . . 5 (𝜑 → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)})
672, 66eqeltrd 2839 . . . 4 (𝜑𝐼 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)})
687, 66sseldd 3922 . . . . . 6 (𝜑 → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ∈ (1...𝐾))
692eleq1d 2823 . . . . . 6 (𝜑 → (𝐼 ∈ (1...𝐾) ↔ inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ∈ (1...𝐾)))
7068, 69mpbird 256 . . . . 5 (𝜑𝐼 ∈ (1...𝐾))
71 fveq2 6774 . . . . . . 7 (𝑧 = 𝐼 → (𝑋𝑧) = (𝑋𝐼))
72 fveq2 6774 . . . . . . 7 (𝑧 = 𝐼 → (𝑌𝑧) = (𝑌𝐼))
7371, 72neeq12d 3005 . . . . . 6 (𝑧 = 𝐼 → ((𝑋𝑧) ≠ (𝑌𝑧) ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
7473elrab3 3625 . . . . 5 (𝐼 ∈ (1...𝐾) → (𝐼 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
7570, 74syl 17 . . . 4 (𝜑 → (𝐼 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
7667, 75mpbid 231 . . 3 (𝜑 → (𝑋𝐼) ≠ (𝑌𝐼))
77 nfv 1917 . . . . . 6 𝑎𝜑
78 nfcv 2907 . . . . . 6 𝑎(1...𝑁)
79 nfcv 2907 . . . . . 6 𝑎
80 elfznn 13285 . . . . . . . . 9 (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ)
8180adantl 482 . . . . . . . 8 ((𝜑𝑎 ∈ (1...𝑁)) → 𝑎 ∈ ℕ)
82 nnre 11980 . . . . . . . 8 (𝑎 ∈ ℕ → 𝑎 ∈ ℝ)
8381, 82syl 17 . . . . . . 7 ((𝜑𝑎 ∈ (1...𝑁)) → 𝑎 ∈ ℝ)
8483ex 413 . . . . . 6 (𝜑 → (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℝ))
8577, 78, 79, 84ssrd 3926 . . . . 5 (𝜑 → (1...𝑁) ⊆ ℝ)
8631, 70ffvelrnd 6962 . . . . 5 (𝜑 → (𝑋𝐼) ∈ (1...𝑁))
8785, 86sseldd 3922 . . . 4 (𝜑 → (𝑋𝐼) ∈ ℝ)
8845, 70ffvelrnd 6962 . . . . 5 (𝜑 → (𝑌𝐼) ∈ (1...𝑁))
8985, 88sseldd 3922 . . . 4 (𝜑 → (𝑌𝐼) ∈ ℝ)
90 lttri2 11057 . . . 4 (((𝑋𝐼) ∈ ℝ ∧ (𝑌𝐼) ∈ ℝ) → ((𝑋𝐼) ≠ (𝑌𝐼) ↔ ((𝑋𝐼) < (𝑌𝐼) ∨ (𝑌𝐼) < (𝑋𝐼))))
9187, 89, 90syl2anc 584 . . 3 (𝜑 → ((𝑋𝐼) ≠ (𝑌𝐼) ↔ ((𝑋𝐼) < (𝑌𝐼) ∨ (𝑌𝐼) < (𝑋𝐼))))
9276, 91mpbid 231 . 2 (𝜑 → ((𝑋𝐼) < (𝑌𝐼) ∨ (𝑌𝐼) < (𝑋𝐼)))
9331ffund 6604 . . . . . 6 (𝜑 → Fun 𝑋)
9493adantr 481 . . . . 5 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → Fun 𝑋)
9531fdmd 6611 . . . . . . 7 (𝜑 → dom 𝑋 = (1...𝐾))
9670, 95eleqtrrd 2842 . . . . . 6 (𝜑𝐼 ∈ dom 𝑋)
9796adantr 481 . . . . 5 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → 𝐼 ∈ dom 𝑋)
98 fvelrn 6954 . . . . 5 ((Fun 𝑋𝐼 ∈ dom 𝑋) → (𝑋𝐼) ∈ ran 𝑋)
9994, 97, 98syl2anc 584 . . . 4 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → (𝑋𝐼) ∈ ran 𝑋)
100 elfznn 13285 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝐾) → 𝑗 ∈ ℕ)
1011003ad2ant3 1134 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℕ)
102101nnred 11988 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℝ)
10362, 70sseldd 3922 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℝ)
1041033ad2ant1 1132 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝐼 ∈ ℝ)
105102, 104lttri4d 11116 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 < 𝐼𝑗 = 𝐼𝐼 < 𝑗))
106453ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑌:(1...𝐾)⟶(1...𝑁))
107 simp3 1137 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (1...𝐾))
108106, 107ffvelrnd 6962 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝑗) ∈ (1...𝑁))
109 fz1ssnn 13287 . . . . . . . . . . . . . . 15 (1...𝑁) ⊆ ℕ
110109sseli 3917 . . . . . . . . . . . . . 14 ((𝑌𝑗) ∈ (1...𝑁) → (𝑌𝑗) ∈ ℕ)
111 nnre 11980 . . . . . . . . . . . . . 14 ((𝑌𝑗) ∈ ℕ → (𝑌𝑗) ∈ ℝ)
112110, 111syl 17 . . . . . . . . . . . . 13 ((𝑌𝑗) ∈ (1...𝑁) → (𝑌𝑗) ∈ ℝ)
113108, 112syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝑗) ∈ ℝ)
114113adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) ∈ ℝ)
11530simprd 496 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
1161153ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
117116adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
118 simpl3 1192 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → 𝑗 ∈ (1...𝐾))
119703ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝐼 ∈ (1...𝐾))
120119adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → 𝐼 ∈ (1...𝐾))
121 breq1 5077 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑗 → (𝑥 < 𝑦𝑗 < 𝑦))
122 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑗 → (𝑋𝑥) = (𝑋𝑗))
123122breq1d 5084 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑗 → ((𝑋𝑥) < (𝑋𝑦) ↔ (𝑋𝑗) < (𝑋𝑦)))
124121, 123imbi12d 345 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑗 → ((𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) ↔ (𝑗 < 𝑦 → (𝑋𝑗) < (𝑋𝑦))))
125 breq2 5078 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐼 → (𝑗 < 𝑦𝑗 < 𝐼))
126 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐼 → (𝑋𝑦) = (𝑋𝐼))
127126breq2d 5086 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐼 → ((𝑋𝑗) < (𝑋𝑦) ↔ (𝑋𝑗) < (𝑋𝐼)))
128125, 127imbi12d 345 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐼 → ((𝑗 < 𝑦 → (𝑋𝑗) < (𝑋𝑦)) ↔ (𝑗 < 𝐼 → (𝑋𝑗) < (𝑋𝐼))))
129124, 128rspc2v 3570 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (1...𝐾) ∧ 𝐼 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) → (𝑗 < 𝐼 → (𝑋𝑗) < (𝑋𝐼))))
130118, 120, 129syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) → (𝑗 < 𝐼 → (𝑋𝑗) < (𝑋𝐼))))
131117, 130mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑗 < 𝐼 → (𝑋𝑗) < (𝑋𝐼)))
132131syldbl2 838 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) < (𝑋𝐼))
133 simp2 1136 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝑗 ∈ (1...𝐾))
134 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝑗 < 𝐼)
1351003ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝑗 ∈ ℕ)
136135nnred 11988 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝑗 ∈ ℝ)
1371033ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝐼 ∈ ℝ)
138136, 137ltnled 11122 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑗 < 𝐼 ↔ ¬ 𝐼𝑗))
139134, 138mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → ¬ 𝐼𝑗)
140633ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ)
14193ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin)
142 infrefilb 11961 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗)
1431423expia 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin) → (𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗))
144140, 141, 143syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗))
145144imp 407 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗)
1461a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → 𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ))
147146breq1d 5084 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → (𝐼𝑗 ↔ inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗))
148145, 147mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → 𝐼𝑗)
149148ex 413 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} → 𝐼𝑗))
150149con3d 152 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (¬ 𝐼𝑗 → ¬ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}))
151139, 150mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → ¬ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)})
152 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧𝑗
153 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧(1...𝐾)
154 nfv 1917 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧(𝑋𝑗) ≠ (𝑌𝑗)
155 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑗 → (𝑋𝑧) = (𝑋𝑗))
156 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑗 → (𝑌𝑧) = (𝑌𝑗))
157155, 156neeq12d 3005 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑗 → ((𝑋𝑧) ≠ (𝑌𝑧) ↔ (𝑋𝑗) ≠ (𝑌𝑗)))
158152, 153, 154, 157elrabf 3620 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ (𝑗 ∈ (1...𝐾) ∧ (𝑋𝑗) ≠ (𝑌𝑗)))
159158notbii 320 . . . . . . . . . . . . . . . . . . . . . 22 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ ¬ (𝑗 ∈ (1...𝐾) ∧ (𝑋𝑗) ≠ (𝑌𝑗)))
160 ianor 979 . . . . . . . . . . . . . . . . . . . . . 22 (¬ (𝑗 ∈ (1...𝐾) ∧ (𝑋𝑗) ≠ (𝑌𝑗)) ↔ (¬ 𝑗 ∈ (1...𝐾) ∨ ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
161159, 160bitri 274 . . . . . . . . . . . . . . . . . . . . 21 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ (¬ 𝑗 ∈ (1...𝐾) ∨ ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
162151, 161sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (¬ 𝑗 ∈ (1...𝐾) ∨ ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
163 imor 850 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (1...𝐾) → ¬ (𝑋𝑗) ≠ (𝑌𝑗)) ↔ (¬ 𝑗 ∈ (1...𝐾) ∨ ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
164162, 163sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑗 ∈ (1...𝐾) → ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
165164imp 407 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ¬ (𝑋𝑗) ≠ (𝑌𝑗))
166 nne 2947 . . . . . . . . . . . . . . . . . 18 (¬ (𝑋𝑗) ≠ (𝑌𝑗) ↔ (𝑋𝑗) = (𝑌𝑗))
167165, 166sylib 217 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) = (𝑌𝑗))
168133, 167mpdan 684 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑋𝑗) = (𝑌𝑗))
1691683expa 1117 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) = (𝑌𝑗))
1701693adantl2 1166 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) = (𝑌𝑗))
171170eqcomd 2744 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) = (𝑋𝑗))
172171breq1d 5084 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → ((𝑌𝑗) < (𝑋𝐼) ↔ (𝑋𝑗) < (𝑋𝐼)))
173132, 172mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) < (𝑋𝐼))
174114, 173ltned 11111 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) ≠ (𝑋𝐼))
175763ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝐼) ≠ (𝑌𝐼))
176175adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑋𝐼) ≠ (𝑌𝐼))
177176necomd 2999 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝐼) ≠ (𝑋𝐼))
178 fveq2 6774 . . . . . . . . . . . . 13 (𝑗 = 𝐼 → (𝑌𝑗) = (𝑌𝐼))
179178neeq1d 3003 . . . . . . . . . . . 12 (𝑗 = 𝐼 → ((𝑌𝑗) ≠ (𝑋𝐼) ↔ (𝑌𝐼) ≠ (𝑋𝐼)))
180179adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → ((𝑌𝑗) ≠ (𝑋𝐼) ↔ (𝑌𝐼) ≠ (𝑋𝐼)))
181177, 180mpbird 256 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝑗) ≠ (𝑋𝐼))
182873ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝐼) ∈ ℝ)
183182adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) ∈ ℝ)
184893ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝐼) ∈ ℝ)
185184adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) ∈ ℝ)
186113adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝑗) ∈ ℝ)
187 simpl2 1191 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) < (𝑌𝐼))
18842simprd 496 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
1891883ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
190189adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
191119adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → 𝐼 ∈ (1...𝐾))
192107adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → 𝑗 ∈ (1...𝐾))
193 breq1 5077 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐼 → (𝑥 < 𝑦𝐼 < 𝑦))
194 fveq2 6774 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝐼 → (𝑌𝑥) = (𝑌𝐼))
195194breq1d 5084 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐼 → ((𝑌𝑥) < (𝑌𝑦) ↔ (𝑌𝐼) < (𝑌𝑦)))
196193, 195imbi12d 345 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐼 → ((𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) ↔ (𝐼 < 𝑦 → (𝑌𝐼) < (𝑌𝑦))))
197 breq2 5078 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑗 → (𝐼 < 𝑦𝐼 < 𝑗))
198 fveq2 6774 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑗 → (𝑌𝑦) = (𝑌𝑗))
199198breq2d 5086 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑗 → ((𝑌𝐼) < (𝑌𝑦) ↔ (𝑌𝐼) < (𝑌𝑗)))
200197, 199imbi12d 345 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑗 → ((𝐼 < 𝑦 → (𝑌𝐼) < (𝑌𝑦)) ↔ (𝐼 < 𝑗 → (𝑌𝐼) < (𝑌𝑗))))
201196, 200rspc2v 3570 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (1...𝐾) ∧ 𝑗 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) → (𝐼 < 𝑗 → (𝑌𝐼) < (𝑌𝑗))))
202191, 192, 201syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) → (𝐼 < 𝑗 → (𝑌𝐼) < (𝑌𝑗))))
203190, 202mpd 15 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝐼 < 𝑗 → (𝑌𝐼) < (𝑌𝑗)))
204203syldbl2 838 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) < (𝑌𝑗))
205183, 185, 186, 187, 204lttrd 11136 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) < (𝑌𝑗))
206183, 205ltned 11111 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) ≠ (𝑌𝑗))
207206necomd 2999 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝑗) ≠ (𝑋𝐼))
208174, 181, 2073jaodan 1429 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ (𝑗 < 𝐼𝑗 = 𝐼𝐼 < 𝑗)) → (𝑌𝑗) ≠ (𝑋𝐼))
209105, 208mpdan 684 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝑗) ≠ (𝑋𝐼))
2102093expa 1117 . . . . . . 7 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝑗) ≠ (𝑋𝐼))
211210neneqd 2948 . . . . . 6 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) ∧ 𝑗 ∈ (1...𝐾)) → ¬ (𝑌𝑗) = (𝑋𝐼))
212211ralrimiva 3103 . . . . 5 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → ∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼))
213 ralnex 3167 . . . . . . . 8 (∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼) ↔ ¬ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼))
214213a1i 11 . . . . . . 7 (𝜑 → (∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼) ↔ ¬ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼)))
215 nnel 3058 . . . . . . . . . 10 (¬ (𝑋𝐼) ∉ ran 𝑌 ↔ (𝑋𝐼) ∈ ran 𝑌)
216215a1i 11 . . . . . . . . 9 (𝜑 → (¬ (𝑋𝐼) ∉ ran 𝑌 ↔ (𝑋𝐼) ∈ ran 𝑌))
217 fvelrnb 6830 . . . . . . . . . 10 (𝑌 Fn (1...𝐾) → ((𝑋𝐼) ∈ ran 𝑌 ↔ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼)))
21846, 217syl 17 . . . . . . . . 9 (𝜑 → ((𝑋𝐼) ∈ ran 𝑌 ↔ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼)))
219216, 218bitrd 278 . . . . . . . 8 (𝜑 → (¬ (𝑋𝐼) ∉ ran 𝑌 ↔ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼)))
220219con1bid 356 . . . . . . 7 (𝜑 → (¬ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼) ↔ (𝑋𝐼) ∉ ran 𝑌))
221214, 220bitrd 278 . . . . . 6 (𝜑 → (∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼) ↔ (𝑋𝐼) ∉ ran 𝑌))
222221adantr 481 . . . . 5 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → (∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼) ↔ (𝑋𝐼) ∉ ran 𝑌))
223212, 222mpbid 231 . . . 4 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → (𝑋𝐼) ∉ ran 𝑌)
224 elnelne1 3059 . . . 4 (((𝑋𝐼) ∈ ran 𝑋 ∧ (𝑋𝐼) ∉ ran 𝑌) → ran 𝑋 ≠ ran 𝑌)
22599, 223, 224syl2anc 584 . . 3 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → ran 𝑋 ≠ ran 𝑌)
22645ffund 6604 . . . . . 6 (𝜑 → Fun 𝑌)
227226adantr 481 . . . . 5 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → Fun 𝑌)
22845fdmd 6611 . . . . . . 7 (𝜑 → dom 𝑌 = (1...𝐾))
22970, 228eleqtrrd 2842 . . . . . 6 (𝜑𝐼 ∈ dom 𝑌)
230229adantr 481 . . . . 5 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → 𝐼 ∈ dom 𝑌)
231 fvelrn 6954 . . . . 5 ((Fun 𝑌𝐼 ∈ dom 𝑌) → (𝑌𝐼) ∈ ran 𝑌)
232227, 230, 231syl2anc 584 . . . 4 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → (𝑌𝐼) ∈ ran 𝑌)
2331003ad2ant3 1134 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℕ)
234233nnred 11988 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℝ)
2351033ad2ant1 1132 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝐼 ∈ ℝ)
236234, 235lttri4d 11116 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 < 𝐼𝑗 = 𝐼𝐼 < 𝑗))
237313ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑋:(1...𝐾)⟶(1...𝑁))
238 simp3 1137 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (1...𝐾))
239237, 238ffvelrnd 6962 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ∈ (1...𝑁))
240109sseli 3917 . . . . . . . . . . . . . 14 ((𝑋𝑗) ∈ (1...𝑁) → (𝑋𝑗) ∈ ℕ)
241239, 240syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ∈ ℕ)
242241nnred 11988 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ∈ ℝ)
243242adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) ∈ ℝ)
2441883ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
245244adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
246 simpl3 1192 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → 𝑗 ∈ (1...𝐾))
247703ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝐼 ∈ (1...𝐾))
248247adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → 𝐼 ∈ (1...𝐾))
249 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑗 → (𝑌𝑥) = (𝑌𝑗))
250249breq1d 5084 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑗 → ((𝑌𝑥) < (𝑌𝑦) ↔ (𝑌𝑗) < (𝑌𝑦)))
251121, 250imbi12d 345 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑗 → ((𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) ↔ (𝑗 < 𝑦 → (𝑌𝑗) < (𝑌𝑦))))
252 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐼 → (𝑌𝑦) = (𝑌𝐼))
253252breq2d 5086 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐼 → ((𝑌𝑗) < (𝑌𝑦) ↔ (𝑌𝑗) < (𝑌𝐼)))
254125, 253imbi12d 345 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐼 → ((𝑗 < 𝑦 → (𝑌𝑗) < (𝑌𝑦)) ↔ (𝑗 < 𝐼 → (𝑌𝑗) < (𝑌𝐼))))
255251, 254rspc2v 3570 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (1...𝐾) ∧ 𝐼 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) → (𝑗 < 𝐼 → (𝑌𝑗) < (𝑌𝐼))))
256246, 248, 255syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) → (𝑗 < 𝐼 → (𝑌𝑗) < (𝑌𝐼))))
257245, 256mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑗 < 𝐼 → (𝑌𝑗) < (𝑌𝐼)))
258257syldbl2 838 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) < (𝑌𝐼))
2591693adantl2 1166 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) = (𝑌𝑗))
260259breq1d 5084 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → ((𝑋𝑗) < (𝑌𝐼) ↔ (𝑌𝑗) < (𝑌𝐼)))
261258, 260mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) < (𝑌𝐼))
262243, 261ltned 11111 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) ≠ (𝑌𝐼))
263893ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝐼) ∈ ℝ)
264263adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝐼) ∈ ℝ)
265 simpl2 1191 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝐼) < (𝑋𝐼))
266264, 265ltned 11111 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝐼) ≠ (𝑋𝐼))
267266necomd 2999 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑋𝐼) ≠ (𝑌𝐼))
268 fveq2 6774 . . . . . . . . . . . . 13 (𝑗 = 𝐼 → (𝑋𝑗) = (𝑋𝐼))
269268neeq1d 3003 . . . . . . . . . . . 12 (𝑗 = 𝐼 → ((𝑋𝑗) ≠ (𝑌𝐼) ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
270269adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → ((𝑋𝑗) ≠ (𝑌𝐼) ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
271267, 270mpbird 256 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑋𝑗) ≠ (𝑌𝐼))
272263adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) ∈ ℝ)
273873ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝐼) ∈ ℝ)
274273adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) ∈ ℝ)
275242adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝑗) ∈ ℝ)
276 simpl2 1191 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) < (𝑋𝐼))
2771153ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
278277adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
279247adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → 𝐼 ∈ (1...𝐾))
280238adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → 𝑗 ∈ (1...𝐾))
281 fveq2 6774 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝐼 → (𝑋𝑥) = (𝑋𝐼))
282281breq1d 5084 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐼 → ((𝑋𝑥) < (𝑋𝑦) ↔ (𝑋𝐼) < (𝑋𝑦)))
283193, 282imbi12d 345 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐼 → ((𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) ↔ (𝐼 < 𝑦 → (𝑋𝐼) < (𝑋𝑦))))
284 fveq2 6774 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑗 → (𝑋𝑦) = (𝑋𝑗))
285284breq2d 5086 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑗 → ((𝑋𝐼) < (𝑋𝑦) ↔ (𝑋𝐼) < (𝑋𝑗)))
286197, 285imbi12d 345 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑗 → ((𝐼 < 𝑦 → (𝑋𝐼) < (𝑋𝑦)) ↔ (𝐼 < 𝑗 → (𝑋𝐼) < (𝑋𝑗))))
287283, 286rspc2v 3570 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (1...𝐾) ∧ 𝑗 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) → (𝐼 < 𝑗 → (𝑋𝐼) < (𝑋𝑗))))
288279, 280, 287syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) → (𝐼 < 𝑗 → (𝑋𝐼) < (𝑋𝑗))))
289278, 288mpd 15 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝐼 < 𝑗 → (𝑋𝐼) < (𝑋𝑗)))
290289syldbl2 838 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) < (𝑋𝑗))
291272, 274, 275, 276, 290lttrd 11136 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) < (𝑋𝑗))
292272, 291ltned 11111 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) ≠ (𝑋𝑗))
293292necomd 2999 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝑗) ≠ (𝑌𝐼))
294262, 271, 2933jaodan 1429 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ (𝑗 < 𝐼𝑗 = 𝐼𝐼 < 𝑗)) → (𝑋𝑗) ≠ (𝑌𝐼))
295236, 294mpdan 684 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ≠ (𝑌𝐼))
2962953expa 1117 . . . . . . 7 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ≠ (𝑌𝐼))
297296neneqd 2948 . . . . . 6 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) ∧ 𝑗 ∈ (1...𝐾)) → ¬ (𝑋𝑗) = (𝑌𝐼))
298297ralrimiva 3103 . . . . 5 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → ∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼))
299 ralnex 3167 . . . . . . . 8 (∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼) ↔ ¬ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼))
300299a1i 11 . . . . . . 7 (𝜑 → (∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼) ↔ ¬ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼)))
301 nnel 3058 . . . . . . . . . 10 (¬ (𝑌𝐼) ∉ ran 𝑋 ↔ (𝑌𝐼) ∈ ran 𝑋)
302301a1i 11 . . . . . . . . 9 (𝜑 → (¬ (𝑌𝐼) ∉ ran 𝑋 ↔ (𝑌𝐼) ∈ ran 𝑋))
303 fvelrnb 6830 . . . . . . . . . 10 (𝑋 Fn (1...𝐾) → ((𝑌𝐼) ∈ ran 𝑋 ↔ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼)))
30432, 303syl 17 . . . . . . . . 9 (𝜑 → ((𝑌𝐼) ∈ ran 𝑋 ↔ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼)))
305302, 304bitrd 278 . . . . . . . 8 (𝜑 → (¬ (𝑌𝐼) ∉ ran 𝑋 ↔ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼)))
306305con1bid 356 . . . . . . 7 (𝜑 → (¬ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼) ↔ (𝑌𝐼) ∉ ran 𝑋))
307300, 306bitrd 278 . . . . . 6 (𝜑 → (∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼) ↔ (𝑌𝐼) ∉ ran 𝑋))
308307adantr 481 . . . . 5 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → (∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼) ↔ (𝑌𝐼) ∉ ran 𝑋))
309298, 308mpbid 231 . . . 4 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → (𝑌𝐼) ∉ ran 𝑋)
310 elnelne1 3059 . . . . 5 (((𝑌𝐼) ∈ ran 𝑌 ∧ (𝑌𝐼) ∉ ran 𝑋) → ran 𝑌 ≠ ran 𝑋)
311310necomd 2999 . . . 4 (((𝑌𝐼) ∈ ran 𝑌 ∧ (𝑌𝐼) ∉ ran 𝑋) → ran 𝑋 ≠ ran 𝑌)
312232, 309, 311syl2anc 584 . . 3 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → ran 𝑋 ≠ ran 𝑌)
313225, 312jaodan 955 . 2 ((𝜑 ∧ ((𝑋𝐼) < (𝑌𝐼) ∨ (𝑌𝐼) < (𝑋𝐼))) → ran 𝑋 ≠ ran 𝑌)
31492, 313mpdan 684 1 (𝜑 → ran 𝑋 ≠ ran 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086  wal 1537   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wnel 3049  wral 3064  wrex 3065  {crab 3068  wss 3887  c0 4256   class class class wbr 5074   Or wor 5502  dom cdm 5589  ran crn 5590  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  infcinf 9200  cr 10870  1c1 10872   < clt 11009  cle 11010  cn 11973  0cn0 12233  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  sticksstones2  40103
  Copyright terms: Public domain W3C validator