Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones1 Structured version   Visualization version   GIF version

Theorem sticksstones1 40030
Description: Different strictly monotone functions have different ranges. (Contributed by metakunt, 27-Sep-2024.)
Hypotheses
Ref Expression
sticksstones1.1 (𝜑𝑁 ∈ ℕ0)
sticksstones1.2 (𝜑𝐾 ∈ ℕ0)
sticksstones1.3 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
sticksstones1.4 (𝜑𝑋𝐴)
sticksstones1.5 (𝜑𝑌𝐴)
sticksstones1.6 (𝜑𝑋𝑌)
sticksstones1.7 𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < )
Assertion
Ref Expression
sticksstones1 (𝜑 → ran 𝑋 ≠ ran 𝑌)
Distinct variable groups:   𝐴,𝑓   𝑥,𝐼,𝑦   𝑧,𝐼   𝑓,𝐾,𝑥,𝑦   𝑧,𝐾   𝑓,𝑁   𝑓,𝑋,𝑥,𝑦   𝑧,𝑋   𝑓,𝑌,𝑥,𝑦   𝑧,𝑌   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)   𝐼(𝑓)   𝑁(𝑥,𝑦,𝑧)

Proof of Theorem sticksstones1
Dummy variables 𝑗 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones1.7 . . . . . 6 𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < )
21a1i 11 . . . . 5 (𝜑𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ))
3 ltso 10986 . . . . . . 7 < Or ℝ
43a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
5 fzfid 13621 . . . . . . . 8 (𝜑 → (1...𝐾) ∈ Fin)
6 ssrab2 4009 . . . . . . . . 9 {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ (1...𝐾)
76a1i 11 . . . . . . . 8 (𝜑 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ (1...𝐾))
8 ssfi 8918 . . . . . . . 8 (((1...𝐾) ∈ Fin ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ (1...𝐾)) → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin)
95, 7, 8syl2anc 583 . . . . . . 7 (𝜑 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin)
10 sticksstones1.6 . . . . . . . 8 (𝜑𝑋𝑌)
11 rabeq0 4315 . . . . . . . . . . . . 13 ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} = ∅ ↔ ∀𝑧 ∈ (1...𝐾) ¬ (𝑋𝑧) ≠ (𝑌𝑧))
12 nne 2946 . . . . . . . . . . . . . 14 (¬ (𝑋𝑧) ≠ (𝑌𝑧) ↔ (𝑋𝑧) = (𝑌𝑧))
1312ralbii 3090 . . . . . . . . . . . . 13 (∀𝑧 ∈ (1...𝐾) ¬ (𝑋𝑧) ≠ (𝑌𝑧) ↔ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧))
1411, 13bitri 274 . . . . . . . . . . . 12 ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} = ∅ ↔ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧))
15 feq1 6565 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑋 → (𝑓:(1...𝐾)⟶(1...𝑁) ↔ 𝑋:(1...𝐾)⟶(1...𝑁)))
16 fveq1 6755 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑋 → (𝑓𝑥) = (𝑋𝑥))
17 fveq1 6755 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑋 → (𝑓𝑦) = (𝑋𝑦))
1816, 17breq12d 5083 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑋 → ((𝑓𝑥) < (𝑓𝑦) ↔ (𝑋𝑥) < (𝑋𝑦)))
1918imbi2d 340 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑋 → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦))))
20192ralbidv 3122 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑋 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦))))
2115, 20anbi12d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑋 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ (𝑋:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))))
22 sticksstones1.3 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
23 abeq2 2871 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ ∀𝑓(𝑓𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))))
2422, 23mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓(𝑓𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
2524spi 2179 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
2625biimpi 215 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝐴 → (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
2726adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓𝐴) → (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
2827ralrimiva 3107 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑓𝐴 (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
29 sticksstones1.4 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋𝐴)
3021, 28, 29rspcdva 3554 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦))))
3130simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋:(1...𝐾)⟶(1...𝑁))
3231ffnd 6585 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 Fn (1...𝐾))
3332adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → 𝑋 Fn (1...𝐾))
34 sticksstones1.5 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌𝐴)
35 feq1 6565 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑌 → (𝑓:(1...𝐾)⟶(1...𝑁) ↔ 𝑌:(1...𝐾)⟶(1...𝑁)))
36 fveq1 6755 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑌 → (𝑓𝑥) = (𝑌𝑥))
37 fveq1 6755 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑌 → (𝑓𝑦) = (𝑌𝑦))
3836, 37breq12d 5083 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑌 → ((𝑓𝑥) < (𝑓𝑦) ↔ (𝑌𝑥) < (𝑌𝑦)))
3938imbi2d 340 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑌 → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
40392ralbidv 3122 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑌 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
4135, 40anbi12d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑌 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ (𝑌:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))))
4241, 28, 34rspcdva 3554 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
4342adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑌𝐴) → (𝑌:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
4434, 43mpdan 683 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑌:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦))))
4544simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌:(1...𝐾)⟶(1...𝑁))
4645ffnd 6585 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 Fn (1...𝐾))
4746adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → 𝑌 Fn (1...𝐾))
48 eqfnfv 6891 . . . . . . . . . . . . . . . 16 ((𝑋 Fn (1...𝐾) ∧ 𝑌 Fn (1...𝐾)) → (𝑋 = 𝑌 ↔ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)))
4933, 47, 48syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → (𝑋 = 𝑌 ↔ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)))
5049bicomd 222 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → (∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧) ↔ 𝑋 = 𝑌))
5150biimpd 228 . . . . . . . . . . . . 13 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → (∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧) → 𝑋 = 𝑌))
5251syldbl2 837 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑧 ∈ (1...𝐾)(𝑋𝑧) = (𝑌𝑧)) → 𝑋 = 𝑌)
5314, 52sylan2b 593 . . . . . . . . . . 11 ((𝜑 ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} = ∅) → 𝑋 = 𝑌)
5453ex 412 . . . . . . . . . 10 (𝜑 → ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} = ∅ → 𝑋 = 𝑌))
5554necon3d 2963 . . . . . . . . 9 (𝜑 → (𝑋𝑌 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅))
5655imp 406 . . . . . . . 8 ((𝜑𝑋𝑌) → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅)
5710, 56mpdan 683 . . . . . . 7 (𝜑 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅)
58 fz1ssnn 13216 . . . . . . . . . 10 (1...𝐾) ⊆ ℕ
5958a1i 11 . . . . . . . . 9 (𝜑 → (1...𝐾) ⊆ ℕ)
60 nnssre 11907 . . . . . . . . . 10 ℕ ⊆ ℝ
6160a1i 11 . . . . . . . . 9 (𝜑 → ℕ ⊆ ℝ)
6259, 61sstrd 3927 . . . . . . . 8 (𝜑 → (1...𝐾) ⊆ ℝ)
637, 62sstrd 3927 . . . . . . 7 (𝜑 → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ)
649, 57, 633jca 1126 . . . . . 6 (𝜑 → ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅ ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ))
65 fiinfcl 9190 . . . . . 6 (( < Or ℝ ∧ ({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ≠ ∅ ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ)) → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)})
664, 64, 65syl2anc 583 . . . . 5 (𝜑 → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)})
672, 66eqeltrd 2839 . . . 4 (𝜑𝐼 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)})
687, 66sseldd 3918 . . . . . 6 (𝜑 → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ∈ (1...𝐾))
692eleq1d 2823 . . . . . 6 (𝜑 → (𝐼 ∈ (1...𝐾) ↔ inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ∈ (1...𝐾)))
7068, 69mpbird 256 . . . . 5 (𝜑𝐼 ∈ (1...𝐾))
71 fveq2 6756 . . . . . . 7 (𝑧 = 𝐼 → (𝑋𝑧) = (𝑋𝐼))
72 fveq2 6756 . . . . . . 7 (𝑧 = 𝐼 → (𝑌𝑧) = (𝑌𝐼))
7371, 72neeq12d 3004 . . . . . 6 (𝑧 = 𝐼 → ((𝑋𝑧) ≠ (𝑌𝑧) ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
7473elrab3 3618 . . . . 5 (𝐼 ∈ (1...𝐾) → (𝐼 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
7570, 74syl 17 . . . 4 (𝜑 → (𝐼 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
7667, 75mpbid 231 . . 3 (𝜑 → (𝑋𝐼) ≠ (𝑌𝐼))
77 nfv 1918 . . . . . 6 𝑎𝜑
78 nfcv 2906 . . . . . 6 𝑎(1...𝑁)
79 nfcv 2906 . . . . . 6 𝑎
80 elfznn 13214 . . . . . . . . 9 (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ)
8180adantl 481 . . . . . . . 8 ((𝜑𝑎 ∈ (1...𝑁)) → 𝑎 ∈ ℕ)
82 nnre 11910 . . . . . . . 8 (𝑎 ∈ ℕ → 𝑎 ∈ ℝ)
8381, 82syl 17 . . . . . . 7 ((𝜑𝑎 ∈ (1...𝑁)) → 𝑎 ∈ ℝ)
8483ex 412 . . . . . 6 (𝜑 → (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℝ))
8577, 78, 79, 84ssrd 3922 . . . . 5 (𝜑 → (1...𝑁) ⊆ ℝ)
8631, 70ffvelrnd 6944 . . . . 5 (𝜑 → (𝑋𝐼) ∈ (1...𝑁))
8785, 86sseldd 3918 . . . 4 (𝜑 → (𝑋𝐼) ∈ ℝ)
8845, 70ffvelrnd 6944 . . . . 5 (𝜑 → (𝑌𝐼) ∈ (1...𝑁))
8985, 88sseldd 3918 . . . 4 (𝜑 → (𝑌𝐼) ∈ ℝ)
90 lttri2 10988 . . . 4 (((𝑋𝐼) ∈ ℝ ∧ (𝑌𝐼) ∈ ℝ) → ((𝑋𝐼) ≠ (𝑌𝐼) ↔ ((𝑋𝐼) < (𝑌𝐼) ∨ (𝑌𝐼) < (𝑋𝐼))))
9187, 89, 90syl2anc 583 . . 3 (𝜑 → ((𝑋𝐼) ≠ (𝑌𝐼) ↔ ((𝑋𝐼) < (𝑌𝐼) ∨ (𝑌𝐼) < (𝑋𝐼))))
9276, 91mpbid 231 . 2 (𝜑 → ((𝑋𝐼) < (𝑌𝐼) ∨ (𝑌𝐼) < (𝑋𝐼)))
9331ffund 6588 . . . . . 6 (𝜑 → Fun 𝑋)
9493adantr 480 . . . . 5 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → Fun 𝑋)
9531fdmd 6595 . . . . . . 7 (𝜑 → dom 𝑋 = (1...𝐾))
9670, 95eleqtrrd 2842 . . . . . 6 (𝜑𝐼 ∈ dom 𝑋)
9796adantr 480 . . . . 5 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → 𝐼 ∈ dom 𝑋)
98 fvelrn 6936 . . . . 5 ((Fun 𝑋𝐼 ∈ dom 𝑋) → (𝑋𝐼) ∈ ran 𝑋)
9994, 97, 98syl2anc 583 . . . 4 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → (𝑋𝐼) ∈ ran 𝑋)
100 elfznn 13214 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝐾) → 𝑗 ∈ ℕ)
1011003ad2ant3 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℕ)
102101nnred 11918 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℝ)
10362, 70sseldd 3918 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℝ)
1041033ad2ant1 1131 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝐼 ∈ ℝ)
105102, 104lttri4d 11046 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 < 𝐼𝑗 = 𝐼𝐼 < 𝑗))
106453ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑌:(1...𝐾)⟶(1...𝑁))
107 simp3 1136 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (1...𝐾))
108106, 107ffvelrnd 6944 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝑗) ∈ (1...𝑁))
109 fz1ssnn 13216 . . . . . . . . . . . . . . 15 (1...𝑁) ⊆ ℕ
110109sseli 3913 . . . . . . . . . . . . . 14 ((𝑌𝑗) ∈ (1...𝑁) → (𝑌𝑗) ∈ ℕ)
111 nnre 11910 . . . . . . . . . . . . . 14 ((𝑌𝑗) ∈ ℕ → (𝑌𝑗) ∈ ℝ)
112110, 111syl 17 . . . . . . . . . . . . 13 ((𝑌𝑗) ∈ (1...𝑁) → (𝑌𝑗) ∈ ℝ)
113108, 112syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝑗) ∈ ℝ)
114113adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) ∈ ℝ)
11530simprd 495 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
1161153ad2ant1 1131 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
117116adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
118 simpl3 1191 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → 𝑗 ∈ (1...𝐾))
119703ad2ant1 1131 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝐼 ∈ (1...𝐾))
120119adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → 𝐼 ∈ (1...𝐾))
121 breq1 5073 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑗 → (𝑥 < 𝑦𝑗 < 𝑦))
122 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑗 → (𝑋𝑥) = (𝑋𝑗))
123122breq1d 5080 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑗 → ((𝑋𝑥) < (𝑋𝑦) ↔ (𝑋𝑗) < (𝑋𝑦)))
124121, 123imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑗 → ((𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) ↔ (𝑗 < 𝑦 → (𝑋𝑗) < (𝑋𝑦))))
125 breq2 5074 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐼 → (𝑗 < 𝑦𝑗 < 𝐼))
126 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐼 → (𝑋𝑦) = (𝑋𝐼))
127126breq2d 5082 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐼 → ((𝑋𝑗) < (𝑋𝑦) ↔ (𝑋𝑗) < (𝑋𝐼)))
128125, 127imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐼 → ((𝑗 < 𝑦 → (𝑋𝑗) < (𝑋𝑦)) ↔ (𝑗 < 𝐼 → (𝑋𝑗) < (𝑋𝐼))))
129124, 128rspc2v 3562 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (1...𝐾) ∧ 𝐼 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) → (𝑗 < 𝐼 → (𝑋𝑗) < (𝑋𝐼))))
130118, 120, 129syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) → (𝑗 < 𝐼 → (𝑋𝑗) < (𝑋𝐼))))
131117, 130mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑗 < 𝐼 → (𝑋𝑗) < (𝑋𝐼)))
132131syldbl2 837 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) < (𝑋𝐼))
133 simp2 1135 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝑗 ∈ (1...𝐾))
134 simp3 1136 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝑗 < 𝐼)
1351003ad2ant2 1132 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝑗 ∈ ℕ)
136135nnred 11918 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝑗 ∈ ℝ)
1371033ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → 𝐼 ∈ ℝ)
138136, 137ltnled 11052 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑗 < 𝐼 ↔ ¬ 𝐼𝑗))
139134, 138mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → ¬ 𝐼𝑗)
140633ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ)
14193ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin)
142 infrefilb 11891 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗)
1431423expia 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ⊆ ℝ ∧ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ∈ Fin) → (𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗))
144140, 141, 143syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗))
145144imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗)
1461a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → 𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ))
147146breq1d 5080 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → (𝐼𝑗 ↔ inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < ) ≤ 𝑗))
148145, 147mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}) → 𝐼𝑗)
149148ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} → 𝐼𝑗))
150149con3d 152 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (¬ 𝐼𝑗 → ¬ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}))
151139, 150mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → ¬ 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)})
152 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧𝑗
153 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧(1...𝐾)
154 nfv 1918 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧(𝑋𝑗) ≠ (𝑌𝑗)
155 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑗 → (𝑋𝑧) = (𝑋𝑗))
156 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑗 → (𝑌𝑧) = (𝑌𝑗))
157155, 156neeq12d 3004 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑗 → ((𝑋𝑧) ≠ (𝑌𝑧) ↔ (𝑋𝑗) ≠ (𝑌𝑗)))
158152, 153, 154, 157elrabf 3613 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ (𝑗 ∈ (1...𝐾) ∧ (𝑋𝑗) ≠ (𝑌𝑗)))
159158notbii 319 . . . . . . . . . . . . . . . . . . . . . 22 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ ¬ (𝑗 ∈ (1...𝐾) ∧ (𝑋𝑗) ≠ (𝑌𝑗)))
160 ianor 978 . . . . . . . . . . . . . . . . . . . . . 22 (¬ (𝑗 ∈ (1...𝐾) ∧ (𝑋𝑗) ≠ (𝑌𝑗)) ↔ (¬ 𝑗 ∈ (1...𝐾) ∨ ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
161159, 160bitri 274 . . . . . . . . . . . . . . . . . . . . 21 𝑗 ∈ {𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)} ↔ (¬ 𝑗 ∈ (1...𝐾) ∨ ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
162151, 161sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (¬ 𝑗 ∈ (1...𝐾) ∨ ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
163 imor 849 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (1...𝐾) → ¬ (𝑋𝑗) ≠ (𝑌𝑗)) ↔ (¬ 𝑗 ∈ (1...𝐾) ∨ ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
164162, 163sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑗 ∈ (1...𝐾) → ¬ (𝑋𝑗) ≠ (𝑌𝑗)))
165164imp 406 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ¬ (𝑋𝑗) ≠ (𝑌𝑗))
166 nne 2946 . . . . . . . . . . . . . . . . . 18 (¬ (𝑋𝑗) ≠ (𝑌𝑗) ↔ (𝑋𝑗) = (𝑌𝑗))
167165, 166sylib 217 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) = (𝑌𝑗))
168133, 167mpdan 683 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (1...𝐾) ∧ 𝑗 < 𝐼) → (𝑋𝑗) = (𝑌𝑗))
1691683expa 1116 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) = (𝑌𝑗))
1701693adantl2 1165 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) = (𝑌𝑗))
171170eqcomd 2744 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) = (𝑋𝑗))
172171breq1d 5080 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → ((𝑌𝑗) < (𝑋𝐼) ↔ (𝑋𝑗) < (𝑋𝐼)))
173132, 172mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) < (𝑋𝐼))
174114, 173ltned 11041 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) ≠ (𝑋𝐼))
175763ad2ant1 1131 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝐼) ≠ (𝑌𝐼))
176175adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑋𝐼) ≠ (𝑌𝐼))
177176necomd 2998 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝐼) ≠ (𝑋𝐼))
178 fveq2 6756 . . . . . . . . . . . . 13 (𝑗 = 𝐼 → (𝑌𝑗) = (𝑌𝐼))
179178neeq1d 3002 . . . . . . . . . . . 12 (𝑗 = 𝐼 → ((𝑌𝑗) ≠ (𝑋𝐼) ↔ (𝑌𝐼) ≠ (𝑋𝐼)))
180179adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → ((𝑌𝑗) ≠ (𝑋𝐼) ↔ (𝑌𝐼) ≠ (𝑋𝐼)))
181177, 180mpbird 256 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝑗) ≠ (𝑋𝐼))
182873ad2ant1 1131 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝐼) ∈ ℝ)
183182adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) ∈ ℝ)
184893ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝐼) ∈ ℝ)
185184adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) ∈ ℝ)
186113adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝑗) ∈ ℝ)
187 simpl2 1190 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) < (𝑌𝐼))
18842simprd 495 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
1891883ad2ant1 1131 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
190189adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
191119adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → 𝐼 ∈ (1...𝐾))
192107adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → 𝑗 ∈ (1...𝐾))
193 breq1 5073 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐼 → (𝑥 < 𝑦𝐼 < 𝑦))
194 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝐼 → (𝑌𝑥) = (𝑌𝐼))
195194breq1d 5080 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐼 → ((𝑌𝑥) < (𝑌𝑦) ↔ (𝑌𝐼) < (𝑌𝑦)))
196193, 195imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐼 → ((𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) ↔ (𝐼 < 𝑦 → (𝑌𝐼) < (𝑌𝑦))))
197 breq2 5074 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑗 → (𝐼 < 𝑦𝐼 < 𝑗))
198 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑗 → (𝑌𝑦) = (𝑌𝑗))
199198breq2d 5082 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑗 → ((𝑌𝐼) < (𝑌𝑦) ↔ (𝑌𝐼) < (𝑌𝑗)))
200197, 199imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑗 → ((𝐼 < 𝑦 → (𝑌𝐼) < (𝑌𝑦)) ↔ (𝐼 < 𝑗 → (𝑌𝐼) < (𝑌𝑗))))
201196, 200rspc2v 3562 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (1...𝐾) ∧ 𝑗 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) → (𝐼 < 𝑗 → (𝑌𝐼) < (𝑌𝑗))))
202191, 192, 201syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) → (𝐼 < 𝑗 → (𝑌𝐼) < (𝑌𝑗))))
203190, 202mpd 15 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝐼 < 𝑗 → (𝑌𝐼) < (𝑌𝑗)))
204203syldbl2 837 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) < (𝑌𝑗))
205183, 185, 186, 187, 204lttrd 11066 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) < (𝑌𝑗))
206183, 205ltned 11041 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) ≠ (𝑌𝑗))
207206necomd 2998 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝑗) ≠ (𝑋𝐼))
208174, 181, 2073jaodan 1428 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ (𝑗 < 𝐼𝑗 = 𝐼𝐼 < 𝑗)) → (𝑌𝑗) ≠ (𝑋𝐼))
209105, 208mpdan 683 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝑗) ≠ (𝑋𝐼))
2102093expa 1116 . . . . . . 7 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝑗) ≠ (𝑋𝐼))
211210neneqd 2947 . . . . . 6 (((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) ∧ 𝑗 ∈ (1...𝐾)) → ¬ (𝑌𝑗) = (𝑋𝐼))
212211ralrimiva 3107 . . . . 5 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → ∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼))
213 ralnex 3163 . . . . . . . 8 (∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼) ↔ ¬ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼))
214213a1i 11 . . . . . . 7 (𝜑 → (∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼) ↔ ¬ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼)))
215 nnel 3057 . . . . . . . . . 10 (¬ (𝑋𝐼) ∉ ran 𝑌 ↔ (𝑋𝐼) ∈ ran 𝑌)
216215a1i 11 . . . . . . . . 9 (𝜑 → (¬ (𝑋𝐼) ∉ ran 𝑌 ↔ (𝑋𝐼) ∈ ran 𝑌))
217 fvelrnb 6812 . . . . . . . . . 10 (𝑌 Fn (1...𝐾) → ((𝑋𝐼) ∈ ran 𝑌 ↔ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼)))
21846, 217syl 17 . . . . . . . . 9 (𝜑 → ((𝑋𝐼) ∈ ran 𝑌 ↔ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼)))
219216, 218bitrd 278 . . . . . . . 8 (𝜑 → (¬ (𝑋𝐼) ∉ ran 𝑌 ↔ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼)))
220219con1bid 355 . . . . . . 7 (𝜑 → (¬ ∃𝑗 ∈ (1...𝐾)(𝑌𝑗) = (𝑋𝐼) ↔ (𝑋𝐼) ∉ ran 𝑌))
221214, 220bitrd 278 . . . . . 6 (𝜑 → (∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼) ↔ (𝑋𝐼) ∉ ran 𝑌))
222221adantr 480 . . . . 5 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → (∀𝑗 ∈ (1...𝐾) ¬ (𝑌𝑗) = (𝑋𝐼) ↔ (𝑋𝐼) ∉ ran 𝑌))
223212, 222mpbid 231 . . . 4 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → (𝑋𝐼) ∉ ran 𝑌)
224 elnelne1 3058 . . . 4 (((𝑋𝐼) ∈ ran 𝑋 ∧ (𝑋𝐼) ∉ ran 𝑌) → ran 𝑋 ≠ ran 𝑌)
22599, 223, 224syl2anc 583 . . 3 ((𝜑 ∧ (𝑋𝐼) < (𝑌𝐼)) → ran 𝑋 ≠ ran 𝑌)
22645ffund 6588 . . . . . 6 (𝜑 → Fun 𝑌)
227226adantr 480 . . . . 5 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → Fun 𝑌)
22845fdmd 6595 . . . . . . 7 (𝜑 → dom 𝑌 = (1...𝐾))
22970, 228eleqtrrd 2842 . . . . . 6 (𝜑𝐼 ∈ dom 𝑌)
230229adantr 480 . . . . 5 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → 𝐼 ∈ dom 𝑌)
231 fvelrn 6936 . . . . 5 ((Fun 𝑌𝐼 ∈ dom 𝑌) → (𝑌𝐼) ∈ ran 𝑌)
232227, 230, 231syl2anc 583 . . . 4 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → (𝑌𝐼) ∈ ran 𝑌)
2331003ad2ant3 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℕ)
234233nnred 11918 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℝ)
2351033ad2ant1 1131 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝐼 ∈ ℝ)
236234, 235lttri4d 11046 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 < 𝐼𝑗 = 𝐼𝐼 < 𝑗))
237313ad2ant1 1131 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑋:(1...𝐾)⟶(1...𝑁))
238 simp3 1136 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (1...𝐾))
239237, 238ffvelrnd 6944 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ∈ (1...𝑁))
240109sseli 3913 . . . . . . . . . . . . . 14 ((𝑋𝑗) ∈ (1...𝑁) → (𝑋𝑗) ∈ ℕ)
241239, 240syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ∈ ℕ)
242241nnred 11918 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ∈ ℝ)
243242adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) ∈ ℝ)
2441883ad2ant1 1131 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
245244adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)))
246 simpl3 1191 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → 𝑗 ∈ (1...𝐾))
247703ad2ant1 1131 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → 𝐼 ∈ (1...𝐾))
248247adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → 𝐼 ∈ (1...𝐾))
249 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑗 → (𝑌𝑥) = (𝑌𝑗))
250249breq1d 5080 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑗 → ((𝑌𝑥) < (𝑌𝑦) ↔ (𝑌𝑗) < (𝑌𝑦)))
251121, 250imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑗 → ((𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) ↔ (𝑗 < 𝑦 → (𝑌𝑗) < (𝑌𝑦))))
252 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐼 → (𝑌𝑦) = (𝑌𝐼))
253252breq2d 5082 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐼 → ((𝑌𝑗) < (𝑌𝑦) ↔ (𝑌𝑗) < (𝑌𝐼)))
254125, 253imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐼 → ((𝑗 < 𝑦 → (𝑌𝑗) < (𝑌𝑦)) ↔ (𝑗 < 𝐼 → (𝑌𝑗) < (𝑌𝐼))))
255251, 254rspc2v 3562 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (1...𝐾) ∧ 𝐼 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) → (𝑗 < 𝐼 → (𝑌𝑗) < (𝑌𝐼))))
256246, 248, 255syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑌𝑥) < (𝑌𝑦)) → (𝑗 < 𝐼 → (𝑌𝑗) < (𝑌𝐼))))
257245, 256mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑗 < 𝐼 → (𝑌𝑗) < (𝑌𝐼)))
258257syldbl2 837 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑌𝑗) < (𝑌𝐼))
2591693adantl2 1165 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) = (𝑌𝑗))
260259breq1d 5080 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → ((𝑋𝑗) < (𝑌𝐼) ↔ (𝑌𝑗) < (𝑌𝐼)))
261258, 260mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) < (𝑌𝐼))
262243, 261ltned 11041 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 < 𝐼) → (𝑋𝑗) ≠ (𝑌𝐼))
263893ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑌𝐼) ∈ ℝ)
264263adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝐼) ∈ ℝ)
265 simpl2 1190 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝐼) < (𝑋𝐼))
266264, 265ltned 11041 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑌𝐼) ≠ (𝑋𝐼))
267266necomd 2998 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑋𝐼) ≠ (𝑌𝐼))
268 fveq2 6756 . . . . . . . . . . . . 13 (𝑗 = 𝐼 → (𝑋𝑗) = (𝑋𝐼))
269268neeq1d 3002 . . . . . . . . . . . 12 (𝑗 = 𝐼 → ((𝑋𝑗) ≠ (𝑌𝐼) ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
270269adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → ((𝑋𝑗) ≠ (𝑌𝐼) ↔ (𝑋𝐼) ≠ (𝑌𝐼)))
271267, 270mpbird 256 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑗 = 𝐼) → (𝑋𝑗) ≠ (𝑌𝐼))
272263adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) ∈ ℝ)
273873ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝐼) ∈ ℝ)
274273adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) ∈ ℝ)
275242adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝑗) ∈ ℝ)
276 simpl2 1190 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) < (𝑋𝐼))
2771153ad2ant1 1131 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
278277adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)))
279247adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → 𝐼 ∈ (1...𝐾))
280238adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → 𝑗 ∈ (1...𝐾))
281 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝐼 → (𝑋𝑥) = (𝑋𝐼))
282281breq1d 5080 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐼 → ((𝑋𝑥) < (𝑋𝑦) ↔ (𝑋𝐼) < (𝑋𝑦)))
283193, 282imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐼 → ((𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) ↔ (𝐼 < 𝑦 → (𝑋𝐼) < (𝑋𝑦))))
284 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑗 → (𝑋𝑦) = (𝑋𝑗))
285284breq2d 5082 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑗 → ((𝑋𝐼) < (𝑋𝑦) ↔ (𝑋𝐼) < (𝑋𝑗)))
286197, 285imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑗 → ((𝐼 < 𝑦 → (𝑋𝐼) < (𝑋𝑦)) ↔ (𝐼 < 𝑗 → (𝑋𝐼) < (𝑋𝑗))))
287283, 286rspc2v 3562 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (1...𝐾) ∧ 𝑗 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) → (𝐼 < 𝑗 → (𝑋𝐼) < (𝑋𝑗))))
288279, 280, 287syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑋𝑥) < (𝑋𝑦)) → (𝐼 < 𝑗 → (𝑋𝐼) < (𝑋𝑗))))
289278, 288mpd 15 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝐼 < 𝑗 → (𝑋𝐼) < (𝑋𝑗)))
290289syldbl2 837 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝐼) < (𝑋𝑗))
291272, 274, 275, 276, 290lttrd 11066 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) < (𝑋𝑗))
292272, 291ltned 11041 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑌𝐼) ≠ (𝑋𝑗))
293292necomd 2998 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝐼 < 𝑗) → (𝑋𝑗) ≠ (𝑌𝐼))
294262, 271, 2933jaodan 1428 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) ∧ (𝑗 < 𝐼𝑗 = 𝐼𝐼 < 𝑗)) → (𝑋𝑗) ≠ (𝑌𝐼))
295236, 294mpdan 683 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ≠ (𝑌𝐼))
2962953expa 1116 . . . . . . 7 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) ∧ 𝑗 ∈ (1...𝐾)) → (𝑋𝑗) ≠ (𝑌𝐼))
297296neneqd 2947 . . . . . 6 (((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) ∧ 𝑗 ∈ (1...𝐾)) → ¬ (𝑋𝑗) = (𝑌𝐼))
298297ralrimiva 3107 . . . . 5 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → ∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼))
299 ralnex 3163 . . . . . . . 8 (∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼) ↔ ¬ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼))
300299a1i 11 . . . . . . 7 (𝜑 → (∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼) ↔ ¬ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼)))
301 nnel 3057 . . . . . . . . . 10 (¬ (𝑌𝐼) ∉ ran 𝑋 ↔ (𝑌𝐼) ∈ ran 𝑋)
302301a1i 11 . . . . . . . . 9 (𝜑 → (¬ (𝑌𝐼) ∉ ran 𝑋 ↔ (𝑌𝐼) ∈ ran 𝑋))
303 fvelrnb 6812 . . . . . . . . . 10 (𝑋 Fn (1...𝐾) → ((𝑌𝐼) ∈ ran 𝑋 ↔ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼)))
30432, 303syl 17 . . . . . . . . 9 (𝜑 → ((𝑌𝐼) ∈ ran 𝑋 ↔ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼)))
305302, 304bitrd 278 . . . . . . . 8 (𝜑 → (¬ (𝑌𝐼) ∉ ran 𝑋 ↔ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼)))
306305con1bid 355 . . . . . . 7 (𝜑 → (¬ ∃𝑗 ∈ (1...𝐾)(𝑋𝑗) = (𝑌𝐼) ↔ (𝑌𝐼) ∉ ran 𝑋))
307300, 306bitrd 278 . . . . . 6 (𝜑 → (∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼) ↔ (𝑌𝐼) ∉ ran 𝑋))
308307adantr 480 . . . . 5 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → (∀𝑗 ∈ (1...𝐾) ¬ (𝑋𝑗) = (𝑌𝐼) ↔ (𝑌𝐼) ∉ ran 𝑋))
309298, 308mpbid 231 . . . 4 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → (𝑌𝐼) ∉ ran 𝑋)
310 elnelne1 3058 . . . . 5 (((𝑌𝐼) ∈ ran 𝑌 ∧ (𝑌𝐼) ∉ ran 𝑋) → ran 𝑌 ≠ ran 𝑋)
311310necomd 2998 . . . 4 (((𝑌𝐼) ∈ ran 𝑌 ∧ (𝑌𝐼) ∉ ran 𝑋) → ran 𝑋 ≠ ran 𝑌)
312232, 309, 311syl2anc 583 . . 3 ((𝜑 ∧ (𝑌𝐼) < (𝑋𝐼)) → ran 𝑋 ≠ ran 𝑌)
313225, 312jaodan 954 . 2 ((𝜑 ∧ ((𝑋𝐼) < (𝑌𝐼) ∨ (𝑌𝐼) < (𝑋𝐼))) → ran 𝑋 ≠ ran 𝑌)
31492, 313mpdan 683 1 (𝜑 → ran 𝑋 ≠ ran 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084  w3a 1085  wal 1537   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wnel 3048  wral 3063  wrex 3064  {crab 3067  wss 3883  c0 4253   class class class wbr 5070   Or wor 5493  dom cdm 5580  ran crn 5581  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  infcinf 9130  cr 10801  1c1 10803   < clt 10940  cle 10941  cn 11903  0cn0 12163  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by:  sticksstones2  40031
  Copyright terms: Public domain W3C validator