MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnel Structured version   Visualization version   GIF version

Theorem nnel 3046
Description: Negation of negated membership, analogous to nne 2936. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nnel 𝐴𝐵𝐴𝐵)

Proof of Theorem nnel
StepHypRef Expression
1 df-nel 3037 . . 3 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
21bicomi 224 . 2 𝐴𝐵𝐴𝐵)
32con1bii 356 1 𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2108  wnel 3036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-nel 3037
This theorem is referenced by:  raldifsnb  4772  mpoxopynvov0g  8213  fsetexb  8878  0mnnnnn0  12533  ssnn0fi  14003  rabssnn0fi  14004  hashnfinnn0  14379  lcmfunsnlem2lem2  16658  finsumvtxdg2ssteplem1  29525  pthdivtx  29709  wwlksnndef  29887  frgrwopreglem4a  30291  poimirlem26  37670  sticksstones1  42159  afv2orxorb  47257  afv2fv0  47294  lswn0  47458  prminf2  47602
  Copyright terms: Public domain W3C validator