MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnel Structured version   Visualization version   GIF version

Theorem nnel 3057
Description: Negation of negated membership, analogous to nne 2945. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nnel 𝐴𝐵𝐴𝐵)

Proof of Theorem nnel
StepHypRef Expression
1 df-nel 3048 . . 3 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
21bicomi 223 . 2 𝐴𝐵𝐴𝐵)
32con1bii 357 1 𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2107  wnel 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-nel 3048
This theorem is referenced by:  raldifsnb  4800  mpoxopynvov0g  8199  fsetexb  8858  0mnnnnn0  12504  ssnn0fi  13950  rabssnn0fi  13951  hashnfinnn0  14321  lcmfunsnlem2lem2  16576  finsumvtxdg2ssteplem1  28802  pthdivtx  28986  wwlksnndef  29159  frgrwopreglem4a  29563  poimirlem26  36514  sticksstones1  40962  afv2orxorb  45936  afv2fv0  45973  lswn0  46112  prminf2  46256
  Copyright terms: Public domain W3C validator