| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnel | Structured version Visualization version GIF version | ||
| Description: Negation of negated membership, analogous to nne 2936. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| nnel | ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3037 | . . 3 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ 𝐴 ∉ 𝐵) |
| 3 | 2 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2108 ∉ wnel 3036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3037 |
| This theorem is referenced by: raldifsnb 4772 mpoxopynvov0g 8213 fsetexb 8878 0mnnnnn0 12533 ssnn0fi 14003 rabssnn0fi 14004 hashnfinnn0 14379 lcmfunsnlem2lem2 16658 finsumvtxdg2ssteplem1 29525 pthdivtx 29709 wwlksnndef 29887 frgrwopreglem4a 30291 poimirlem26 37670 sticksstones1 42159 afv2orxorb 47257 afv2fv0 47294 lswn0 47458 prminf2 47602 |
| Copyright terms: Public domain | W3C validator |