MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnel Structured version   Visualization version   GIF version

Theorem nnel 3056
Description: Negation of negated membership, analogous to nne 2944. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nnel 𝐴𝐵𝐴𝐵)

Proof of Theorem nnel
StepHypRef Expression
1 df-nel 3047 . . 3 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
21bicomi 223 . 2 𝐴𝐵𝐴𝐵)
32con1bii 356 1 𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2106  wnel 3046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-nel 3047
This theorem is referenced by:  raldifsnb  4798  mpoxopynvov0g  8195  fsetexb  8854  0mnnnnn0  12500  ssnn0fi  13946  rabssnn0fi  13947  hashnfinnn0  14317  lcmfunsnlem2lem2  16572  finsumvtxdg2ssteplem1  28791  pthdivtx  28975  wwlksnndef  29148  frgrwopreglem4a  29552  poimirlem26  36502  sticksstones1  40950  afv2orxorb  45922  afv2fv0  45959  lswn0  46098  prminf2  46242
  Copyright terms: Public domain W3C validator