MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnel Structured version   Visualization version   GIF version

Theorem nnel 3039
Description: Negation of negated membership, analogous to nne 2929. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nnel 𝐴𝐵𝐴𝐵)

Proof of Theorem nnel
StepHypRef Expression
1 df-nel 3030 . . 3 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
21bicomi 224 . 2 𝐴𝐵𝐴𝐵)
32con1bii 356 1 𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2109  wnel 3029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-nel 3030
This theorem is referenced by:  raldifsnb  4747  mpoxopynvov0g  8147  fsetexb  8791  0mnnnnn0  12416  ssnn0fi  13892  rabssnn0fi  13893  hashnfinnn0  14268  lcmfunsnlem2lem2  16550  finsumvtxdg2ssteplem1  29491  pthdivtx  29672  wwlksnndef  29850  frgrwopreglem4a  30254  poimirlem26  37636  sticksstones1  42129  afv2orxorb  47222  afv2fv0  47259  lswn0  47438  prminf2  47582
  Copyright terms: Public domain W3C validator