![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnel | Structured version Visualization version GIF version |
Description: Negation of negated membership, analogous to nne 2943. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nnel | ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3046 | . . 3 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
2 | 1 | bicomi 223 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ 𝐴 ∉ 𝐵) |
3 | 2 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2105 ∉ wnel 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-nel 3046 |
This theorem is referenced by: raldifsnb 4799 mpoxopynvov0g 8205 fsetexb 8864 0mnnnnn0 12511 ssnn0fi 13957 rabssnn0fi 13958 hashnfinnn0 14328 lcmfunsnlem2lem2 16583 finsumvtxdg2ssteplem1 29084 pthdivtx 29268 wwlksnndef 29441 frgrwopreglem4a 29845 poimirlem26 36830 sticksstones1 41281 afv2orxorb 46247 afv2fv0 46284 lswn0 46423 prminf2 46567 |
Copyright terms: Public domain | W3C validator |