MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnel Structured version   Visualization version   GIF version

Theorem nnel 3039
Description: Negation of negated membership, analogous to nne 2929. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nnel 𝐴𝐵𝐴𝐵)

Proof of Theorem nnel
StepHypRef Expression
1 df-nel 3030 . . 3 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
21bicomi 224 . 2 𝐴𝐵𝐴𝐵)
32con1bii 356 1 𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2109  wnel 3029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-nel 3030
This theorem is referenced by:  raldifsnb  4760  mpoxopynvov0g  8193  fsetexb  8837  0mnnnnn0  12474  ssnn0fi  13950  rabssnn0fi  13951  hashnfinnn0  14326  lcmfunsnlem2lem2  16609  finsumvtxdg2ssteplem1  29473  pthdivtx  29657  wwlksnndef  29835  frgrwopreglem4a  30239  poimirlem26  37640  sticksstones1  42134  afv2orxorb  47229  afv2fv0  47266  lswn0  47445  prminf2  47589
  Copyright terms: Public domain W3C validator