| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnel | Structured version Visualization version GIF version | ||
| Description: Negation of negated membership, analogous to nne 2932. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| nnel | ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3033 | . . 3 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ 𝐴 ∉ 𝐵) |
| 3 | 2 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2111 ∉ wnel 3032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3033 |
| This theorem is referenced by: raldifsnb 4745 mpoxopynvov0g 8144 fsetexb 8788 0mnnnnn0 12413 ssnn0fi 13892 rabssnn0fi 13893 hashnfinnn0 14268 lcmfunsnlem2lem2 16550 finsumvtxdg2ssteplem1 29524 pthdivtx 29705 wwlksnndef 29883 frgrwopreglem4a 30290 poimirlem26 37696 sticksstones1 42249 afv2orxorb 47338 afv2fv0 47375 lswn0 47554 prminf2 47698 |
| Copyright terms: Public domain | W3C validator |