| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnel | Structured version Visualization version GIF version | ||
| Description: Negation of negated membership, analogous to nne 2930. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| nnel | ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3031 | . . 3 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ 𝐴 ∉ 𝐵) |
| 3 | 2 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2109 ∉ wnel 3030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3031 |
| This theorem is referenced by: raldifsnb 4763 mpoxopynvov0g 8196 fsetexb 8840 0mnnnnn0 12481 ssnn0fi 13957 rabssnn0fi 13958 hashnfinnn0 14333 lcmfunsnlem2lem2 16616 finsumvtxdg2ssteplem1 29480 pthdivtx 29664 wwlksnndef 29842 frgrwopreglem4a 30246 poimirlem26 37647 sticksstones1 42141 afv2orxorb 47233 afv2fv0 47270 lswn0 47449 prminf2 47593 |
| Copyright terms: Public domain | W3C validator |