![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnel | Structured version Visualization version GIF version |
Description: Negation of negated membership, analogous to nne 2942. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nnel | ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3045 | . . 3 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
2 | 1 | bicomi 224 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ 𝐴 ∉ 𝐵) |
3 | 2 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2106 ∉ wnel 3044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-nel 3045 |
This theorem is referenced by: raldifsnb 4801 mpoxopynvov0g 8238 fsetexb 8903 0mnnnnn0 12556 ssnn0fi 14023 rabssnn0fi 14024 hashnfinnn0 14397 lcmfunsnlem2lem2 16673 finsumvtxdg2ssteplem1 29578 pthdivtx 29762 wwlksnndef 29935 frgrwopreglem4a 30339 poimirlem26 37633 sticksstones1 42128 afv2orxorb 47178 afv2fv0 47215 lswn0 47369 prminf2 47513 uspgrimprop 47811 |
Copyright terms: Public domain | W3C validator |