![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnel | Structured version Visualization version GIF version |
Description: Negation of negated membership, analogous to nne 2975. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nnel | ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3075 | . . 3 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
2 | 1 | bicomi 216 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ 𝐴 ∉ 𝐵) |
3 | 2 | con1bii 348 | 1 ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∈ wcel 2157 ∉ wnel 3074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-nel 3075 |
This theorem is referenced by: raldifsnb 4515 mpt2xopynvov0g 7578 0mnnnnn0 11614 ssnn0fi 13039 rabssnn0fi 13040 hashnfinnn0 13402 lcmfunsnlem2lem2 15687 finsumvtxdg2ssteplem1 26795 pthdivtx 26983 wwlksnndef 27185 wwlksnfi 27186 frgrwopreglem4a 27659 poimirlem26 33924 afv2orxorb 42082 afv2fv0 42119 lswn0 42220 prminf2 42282 |
Copyright terms: Public domain | W3C validator |