MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnel Structured version   Visualization version   GIF version

Theorem nnel 3062
Description: Negation of negated membership, analogous to nne 2950. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nnel 𝐴𝐵𝐴𝐵)

Proof of Theorem nnel
StepHypRef Expression
1 df-nel 3053 . . 3 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
21bicomi 224 . 2 𝐴𝐵𝐴𝐵)
32con1bii 356 1 𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2108  wnel 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-nel 3053
This theorem is referenced by:  raldifsnb  4821  mpoxopynvov0g  8255  fsetexb  8922  0mnnnnn0  12585  ssnn0fi  14036  rabssnn0fi  14037  hashnfinnn0  14410  lcmfunsnlem2lem2  16686  finsumvtxdg2ssteplem1  29581  pthdivtx  29765  wwlksnndef  29938  frgrwopreglem4a  30342  poimirlem26  37606  sticksstones1  42103  afv2orxorb  47143  afv2fv0  47180  lswn0  47318  prminf2  47462  uspgrimprop  47757
  Copyright terms: Public domain W3C validator