![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnel | Structured version Visualization version GIF version |
Description: Negation of negated membership, analogous to nne 2945. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nnel | ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3048 | . . 3 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
2 | 1 | bicomi 223 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ 𝐴 ∉ 𝐵) |
3 | 2 | con1bii 357 | 1 ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2107 ∉ wnel 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-nel 3048 |
This theorem is referenced by: raldifsnb 4800 mpoxopynvov0g 8199 fsetexb 8858 0mnnnnn0 12504 ssnn0fi 13950 rabssnn0fi 13951 hashnfinnn0 14321 lcmfunsnlem2lem2 16576 finsumvtxdg2ssteplem1 28802 pthdivtx 28986 wwlksnndef 29159 frgrwopreglem4a 29563 poimirlem26 36514 sticksstones1 40962 afv2orxorb 45936 afv2fv0 45973 lswn0 46112 prminf2 46256 |
Copyright terms: Public domain | W3C validator |