MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnel Structured version   Visualization version   GIF version

Theorem nnel 3040
Description: Negation of negated membership, analogous to nne 2930. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nnel 𝐴𝐵𝐴𝐵)

Proof of Theorem nnel
StepHypRef Expression
1 df-nel 3031 . . 3 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
21bicomi 224 . 2 𝐴𝐵𝐴𝐵)
32con1bii 356 1 𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2109  wnel 3030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-nel 3031
This theorem is referenced by:  raldifsnb  4763  mpoxopynvov0g  8196  fsetexb  8840  0mnnnnn0  12481  ssnn0fi  13957  rabssnn0fi  13958  hashnfinnn0  14333  lcmfunsnlem2lem2  16616  finsumvtxdg2ssteplem1  29480  pthdivtx  29664  wwlksnndef  29842  frgrwopreglem4a  30246  poimirlem26  37647  sticksstones1  42141  afv2orxorb  47233  afv2fv0  47270  lswn0  47449  prminf2  47593
  Copyright terms: Public domain W3C validator