![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnel | Structured version Visualization version GIF version |
Description: Negation of negated membership, analogous to nne 2950. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nnel | ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3053 | . . 3 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
2 | 1 | bicomi 224 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ 𝐴 ∉ 𝐵) |
3 | 2 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2108 ∉ wnel 3052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-nel 3053 |
This theorem is referenced by: raldifsnb 4821 mpoxopynvov0g 8255 fsetexb 8922 0mnnnnn0 12585 ssnn0fi 14036 rabssnn0fi 14037 hashnfinnn0 14410 lcmfunsnlem2lem2 16686 finsumvtxdg2ssteplem1 29581 pthdivtx 29765 wwlksnndef 29938 frgrwopreglem4a 30342 poimirlem26 37606 sticksstones1 42103 afv2orxorb 47143 afv2fv0 47180 lswn0 47318 prminf2 47462 uspgrimprop 47757 |
Copyright terms: Public domain | W3C validator |