![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnel | Structured version Visualization version GIF version |
Description: Negation of negated membership, analogous to nne 2944. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nnel | ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3047 | . . 3 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
2 | 1 | bicomi 223 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ 𝐴 ∉ 𝐵) |
3 | 2 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2106 ∉ wnel 3046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-nel 3047 |
This theorem is referenced by: raldifsnb 4798 mpoxopynvov0g 8195 fsetexb 8854 0mnnnnn0 12500 ssnn0fi 13946 rabssnn0fi 13947 hashnfinnn0 14317 lcmfunsnlem2lem2 16572 finsumvtxdg2ssteplem1 28791 pthdivtx 28975 wwlksnndef 29148 frgrwopreglem4a 29552 poimirlem26 36502 sticksstones1 40950 afv2orxorb 45922 afv2fv0 45959 lswn0 46098 prminf2 46242 |
Copyright terms: Public domain | W3C validator |