MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnel Structured version   Visualization version   GIF version

Theorem nnel 3042
Description: Negation of negated membership, analogous to nne 2932. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nnel 𝐴𝐵𝐴𝐵)

Proof of Theorem nnel
StepHypRef Expression
1 df-nel 3033 . . 3 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
21bicomi 224 . 2 𝐴𝐵𝐴𝐵)
32con1bii 356 1 𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2111  wnel 3032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-nel 3033
This theorem is referenced by:  raldifsnb  4745  mpoxopynvov0g  8144  fsetexb  8788  0mnnnnn0  12413  ssnn0fi  13892  rabssnn0fi  13893  hashnfinnn0  14268  lcmfunsnlem2lem2  16550  finsumvtxdg2ssteplem1  29524  pthdivtx  29705  wwlksnndef  29883  frgrwopreglem4a  30290  poimirlem26  37696  sticksstones1  42249  afv2orxorb  47338  afv2fv0  47375  lswn0  47554  prminf2  47698
  Copyright terms: Public domain W3C validator