MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnel Structured version   Visualization version   GIF version

Theorem nnel 3039
Description: Negation of negated membership, analogous to nne 2929. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nnel 𝐴𝐵𝐴𝐵)

Proof of Theorem nnel
StepHypRef Expression
1 df-nel 3030 . . 3 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
21bicomi 224 . 2 𝐴𝐵𝐴𝐵)
32con1bii 356 1 𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2109  wnel 3029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-nel 3030
This theorem is referenced by:  raldifsnb  4756  mpoxopynvov0g  8170  fsetexb  8814  0mnnnnn0  12450  ssnn0fi  13926  rabssnn0fi  13927  hashnfinnn0  14302  lcmfunsnlem2lem2  16585  finsumvtxdg2ssteplem1  29526  pthdivtx  29707  wwlksnndef  29885  frgrwopreglem4a  30289  poimirlem26  37633  sticksstones1  42127  afv2orxorb  47222  afv2fv0  47259  lswn0  47438  prminf2  47582
  Copyright terms: Public domain W3C validator