Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnel | Structured version Visualization version GIF version |
Description: Negation of negated membership, analogous to nne 2946. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nnel | ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3049 | . . 3 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
2 | 1 | bicomi 223 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ 𝐴 ∉ 𝐵) |
3 | 2 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2108 ∉ wnel 3048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-nel 3049 |
This theorem is referenced by: raldifsnb 4726 mpoxopynvov0g 8001 fsetexb 8610 0mnnnnn0 12195 ssnn0fi 13633 rabssnn0fi 13634 hashnfinnn0 14004 lcmfunsnlem2lem2 16272 finsumvtxdg2ssteplem1 27815 pthdivtx 27998 wwlksnndef 28171 frgrwopreglem4a 28575 poimirlem26 35730 sticksstones1 40030 afv2orxorb 44607 afv2fv0 44644 lswn0 44784 prminf2 44928 |
Copyright terms: Public domain | W3C validator |