MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnel Structured version   Visualization version   GIF version

Theorem nnel 3055
Description: Negation of negated membership, analogous to nne 2943. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nnel 𝐴𝐵𝐴𝐵)

Proof of Theorem nnel
StepHypRef Expression
1 df-nel 3046 . . 3 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
21bicomi 223 . 2 𝐴𝐵𝐴𝐵)
32con1bii 356 1 𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2105  wnel 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-nel 3046
This theorem is referenced by:  raldifsnb  4799  mpoxopynvov0g  8205  fsetexb  8864  0mnnnnn0  12511  ssnn0fi  13957  rabssnn0fi  13958  hashnfinnn0  14328  lcmfunsnlem2lem2  16583  finsumvtxdg2ssteplem1  29084  pthdivtx  29268  wwlksnndef  29441  frgrwopreglem4a  29845  poimirlem26  36830  sticksstones1  41281  afv2orxorb  46247  afv2fv0  46284  lswn0  46423  prminf2  46567
  Copyright terms: Public domain W3C validator