MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnel Structured version   Visualization version   GIF version

Theorem nnel 3057
Description: Negation of negated membership, analogous to nne 2946. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nnel 𝐴𝐵𝐴𝐵)

Proof of Theorem nnel
StepHypRef Expression
1 df-nel 3049 . . 3 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
21bicomi 223 . 2 𝐴𝐵𝐴𝐵)
32con1bii 356 1 𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2108  wnel 3048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-nel 3049
This theorem is referenced by:  raldifsnb  4726  mpoxopynvov0g  8001  fsetexb  8610  0mnnnnn0  12195  ssnn0fi  13633  rabssnn0fi  13634  hashnfinnn0  14004  lcmfunsnlem2lem2  16272  finsumvtxdg2ssteplem1  27815  pthdivtx  27998  wwlksnndef  28171  frgrwopreglem4a  28575  poimirlem26  35730  sticksstones1  40030  afv2orxorb  44607  afv2fv0  44644  lswn0  44784  prminf2  44928
  Copyright terms: Public domain W3C validator