| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnel | Structured version Visualization version GIF version | ||
| Description: Negation of negated membership, analogous to nne 2929. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| nnel | ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3030 | . . 3 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ 𝐴 ∉ 𝐵) |
| 3 | 2 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2109 ∉ wnel 3029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3030 |
| This theorem is referenced by: raldifsnb 4760 mpoxopynvov0g 8193 fsetexb 8837 0mnnnnn0 12474 ssnn0fi 13950 rabssnn0fi 13951 hashnfinnn0 14326 lcmfunsnlem2lem2 16609 finsumvtxdg2ssteplem1 29473 pthdivtx 29657 wwlksnndef 29835 frgrwopreglem4a 30239 poimirlem26 37640 sticksstones1 42134 afv2orxorb 47229 afv2fv0 47266 lswn0 47445 prminf2 47589 |
| Copyright terms: Public domain | W3C validator |