MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnel Structured version   Visualization version   GIF version

Theorem nnel 3054
Description: Negation of negated membership, analogous to nne 2942. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nnel 𝐴𝐵𝐴𝐵)

Proof of Theorem nnel
StepHypRef Expression
1 df-nel 3045 . . 3 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
21bicomi 224 . 2 𝐴𝐵𝐴𝐵)
32con1bii 356 1 𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2106  wnel 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-nel 3045
This theorem is referenced by:  raldifsnb  4801  mpoxopynvov0g  8238  fsetexb  8903  0mnnnnn0  12556  ssnn0fi  14023  rabssnn0fi  14024  hashnfinnn0  14397  lcmfunsnlem2lem2  16673  finsumvtxdg2ssteplem1  29578  pthdivtx  29762  wwlksnndef  29935  frgrwopreglem4a  30339  poimirlem26  37633  sticksstones1  42128  afv2orxorb  47178  afv2fv0  47215  lswn0  47369  prminf2  47513  uspgrimprop  47811
  Copyright terms: Public domain W3C validator