![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
Ref | Expression |
---|---|
nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq2 2859 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | |
2 | 1 | neqned 2948 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2107 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-clel 2811 df-ne 2942 |
This theorem is referenced by: elnelne1 3058 difsnb 4810 fofinf1o 9327 fin23lem24 10317 fin23lem31 10338 ttukeylem7 10510 npomex 10991 lbspss 20693 islbs3 20768 lbsextlem4 20774 obslbs 21285 hauspwpwf1 23491 ppiltx 26681 tglineneq 27895 lnopp2hpgb 28014 colopp 28020 ex-pss 29681 drngidlhash 32552 mxidlmaxv 32584 mxidlprm 32586 drnglidl1ne0 32591 drng0mxidl 32592 qsdrnglem2 32610 ply1annnr 32764 irngnminplynz 32771 algextdeglem1 32772 unelldsys 33156 cntnevol 33226 fin2solem 36474 lshpnelb 37854 osumcllem10N 38836 pexmidlem7N 38847 dochsnkrlem1 40340 ricdrng1 41102 rpnnen3lem 41770 lvecpsslmod 47188 |
Copyright terms: Public domain | W3C validator |