![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
Ref | Expression |
---|---|
nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq2 2863 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | |
2 | 1 | neqned 2944 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2105 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-clel 2813 df-ne 2938 |
This theorem is referenced by: elnelne1 3054 difsnb 4810 fofinf1o 9369 fin23lem24 10359 fin23lem31 10380 ttukeylem7 10552 npomex 11033 lbspss 21098 islbs3 21174 lbsextlem4 21180 obslbs 21767 hauspwpwf1 24010 ppiltx 27234 tglineneq 28666 lnopp2hpgb 28785 colopp 28791 ex-pss 30456 drngidlhash 33441 ssdifidlprm 33465 mxidlmaxv 33475 mxidlprm 33477 drnglidl1ne0 33482 drng0mxidl 33483 qsdrnglem2 33503 rsprprmprmidl 33529 1arithufdlem4 33554 ply1annnr 33710 irngnminplynz 33719 algextdeglem4 33725 unelldsys 34138 cntnevol 34208 fin2solem 37592 lshpnelb 38965 osumcllem10N 39947 pexmidlem7N 39958 dochsnkrlem1 41451 ricdrng1 42514 rpnnen3lem 43019 lvecpsslmod 48352 |
Copyright terms: Public domain | W3C validator |