Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
Ref | Expression |
---|---|
nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq2 2877 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | |
2 | 1 | neqned 2958 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∈ wcel 2111 ≠ wne 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-cleq 2750 df-clel 2830 df-ne 2952 |
This theorem is referenced by: elnelne1 3065 difsnb 4696 fofinf1o 8832 fin23lem24 9782 fin23lem31 9803 ttukeylem7 9975 npomex 10456 lbspss 19922 islbs3 19995 lbsextlem4 20001 obslbs 20495 hauspwpwf1 22687 ppiltx 25861 tglineneq 26537 lnopp2hpgb 26656 colopp 26662 ex-pss 28312 mxidlprm 31161 unelldsys 31645 cntnevol 31715 fin2solem 35323 lshpnelb 36560 osumcllem10N 37541 pexmidlem7N 37552 dochsnkrlem1 39045 rpnnen3lem 40345 lvecpsslmod 45281 |
Copyright terms: Public domain | W3C validator |