![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
Ref | Expression |
---|---|
nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq2 2856 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | |
2 | 1 | neqned 2945 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∈ wcel 2104 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-clel 2808 df-ne 2939 |
This theorem is referenced by: elnelne1 3055 difsnb 4808 fofinf1o 9329 fin23lem24 10319 fin23lem31 10340 ttukeylem7 10512 npomex 10993 lbspss 20837 islbs3 20913 lbsextlem4 20919 obslbs 21504 hauspwpwf1 23711 ppiltx 26917 tglineneq 28162 lnopp2hpgb 28281 colopp 28287 ex-pss 29948 drngidlhash 32826 mxidlmaxv 32858 mxidlprm 32860 drnglidl1ne0 32865 drng0mxidl 32866 qsdrnglem2 32884 ply1annnr 33053 irngnminplynz 33060 algextdeglem4 33065 unelldsys 33454 cntnevol 33524 fin2solem 36777 lshpnelb 38157 osumcllem10N 39139 pexmidlem7N 39150 dochsnkrlem1 40643 ricdrng1 41406 rpnnen3lem 42072 lvecpsslmod 47275 |
Copyright terms: Public domain | W3C validator |