![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
Ref | Expression |
---|---|
nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq2 2869 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | |
2 | 1 | neqned 2953 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-ne 2947 |
This theorem is referenced by: elnelne1 3063 difsnb 4831 fofinf1o 9400 fin23lem24 10391 fin23lem31 10412 ttukeylem7 10584 npomex 11065 lbspss 21104 islbs3 21180 lbsextlem4 21186 obslbs 21773 hauspwpwf1 24016 ppiltx 27238 tglineneq 28670 lnopp2hpgb 28789 colopp 28795 ex-pss 30460 drngidlhash 33427 ssdifidlprm 33451 mxidlmaxv 33461 mxidlprm 33463 drnglidl1ne0 33468 drng0mxidl 33469 qsdrnglem2 33489 rsprprmprmidl 33515 1arithufdlem4 33540 ply1annnr 33696 irngnminplynz 33705 algextdeglem4 33711 unelldsys 34122 cntnevol 34192 fin2solem 37566 lshpnelb 38940 osumcllem10N 39922 pexmidlem7N 39933 dochsnkrlem1 41426 ricdrng1 42483 rpnnen3lem 42988 lvecpsslmod 48236 |
Copyright terms: Public domain | W3C validator |