| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
| Ref | Expression |
|---|---|
| nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelneq2 2859 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | |
| 2 | 1 | neqned 2939 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 df-ne 2933 |
| This theorem is referenced by: elnelne1 3047 difsnb 4782 fofinf1o 9342 fin23lem24 10334 fin23lem31 10355 ttukeylem7 10527 npomex 11008 lbspss 21038 islbs3 21114 lbsextlem4 21120 obslbs 21688 hauspwpwf1 23923 ppiltx 27137 tglineneq 28569 lnopp2hpgb 28688 colopp 28694 ex-pss 30355 drngidlhash 33395 ssdifidlprm 33419 mxidlmaxv 33429 mxidlprm 33431 drnglidl1ne0 33436 drng0mxidl 33437 qsdrnglem2 33457 rsprprmprmidl 33483 1arithufdlem4 33508 ply1annnr 33683 irngnminplynz 33692 algextdeglem4 33700 unelldsys 34135 cntnevol 34205 fin2solem 37576 lshpnelb 38948 osumcllem10N 39930 pexmidlem7N 39941 dochsnkrlem1 41434 ricdrng1 42498 rpnnen3lem 43002 lvecpsslmod 48431 |
| Copyright terms: Public domain | W3C validator |