| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
| Ref | Expression |
|---|---|
| nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelneq2 2853 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | |
| 2 | 1 | neqned 2932 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-ne 2926 |
| This theorem is referenced by: elnelne1 3040 difsnb 4770 fofinf1o 9283 fin23lem24 10275 fin23lem31 10296 ttukeylem7 10468 npomex 10949 lbspss 20989 islbs3 21065 lbsextlem4 21071 obslbs 21639 hauspwpwf1 23874 ppiltx 27087 tglineneq 28571 lnopp2hpgb 28690 colopp 28696 ex-pss 30357 drngidlhash 33405 ssdifidlprm 33429 mxidlmaxv 33439 mxidlprm 33441 drnglidl1ne0 33446 drng0mxidl 33447 qsdrnglem2 33467 rsprprmprmidl 33493 1arithufdlem4 33518 ply1annnr 33693 irngnminplynz 33702 algextdeglem4 33710 unelldsys 34148 cntnevol 34218 fin2solem 37600 lshpnelb 38977 osumcllem10N 39959 pexmidlem7N 39970 dochsnkrlem1 41463 ricdrng1 42516 rpnnen3lem 43020 lvecpsslmod 48496 |
| Copyright terms: Public domain | W3C validator |