| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
| Ref | Expression |
|---|---|
| nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelneq2 2856 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | |
| 2 | 1 | neqned 2935 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-ne 2929 |
| This theorem is referenced by: elnelne1 3043 difsnb 4755 fofinf1o 9216 fin23lem24 10213 fin23lem31 10234 ttukeylem7 10406 npomex 10887 lbspss 21016 islbs3 21092 lbsextlem4 21098 obslbs 21667 hauspwpwf1 23902 ppiltx 27114 tglineneq 28622 lnopp2hpgb 28741 colopp 28747 ex-pss 30408 drngidlhash 33399 ssdifidlprm 33423 mxidlmaxv 33433 mxidlprm 33435 drnglidl1ne0 33440 drng0mxidl 33441 qsdrnglem2 33461 rsprprmprmidl 33487 1arithufdlem4 33512 ply1annnr 33716 irngnminplynz 33725 algextdeglem4 33733 unelldsys 34171 cntnevol 34241 fin2solem 37645 lshpnelb 39082 osumcllem10N 40063 pexmidlem7N 40074 dochsnkrlem1 41567 ricdrng1 42620 rpnnen3lem 43123 lvecpsslmod 48607 |
| Copyright terms: Public domain | W3C validator |