Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
Ref | Expression |
---|---|
nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq2 2864 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | |
2 | 1 | neqned 2949 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-ne 2943 |
This theorem is referenced by: elnelne1 3058 difsnb 4736 fofinf1o 9024 fin23lem24 10009 fin23lem31 10030 ttukeylem7 10202 npomex 10683 lbspss 20259 islbs3 20332 lbsextlem4 20338 obslbs 20847 hauspwpwf1 23046 ppiltx 26231 tglineneq 26909 lnopp2hpgb 27028 colopp 27034 ex-pss 28693 mxidlprm 31542 unelldsys 32026 cntnevol 32096 fin2solem 35690 lshpnelb 36925 osumcllem10N 37906 pexmidlem7N 37917 dochsnkrlem1 39410 rpnnen3lem 40769 lvecpsslmod 45736 |
Copyright terms: Public domain | W3C validator |