| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
| Ref | Expression |
|---|---|
| nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelneq2 2854 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | |
| 2 | 1 | neqned 2933 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 df-ne 2927 |
| This theorem is referenced by: elnelne1 3041 difsnb 4773 fofinf1o 9290 fin23lem24 10282 fin23lem31 10303 ttukeylem7 10475 npomex 10956 lbspss 20996 islbs3 21072 lbsextlem4 21078 obslbs 21646 hauspwpwf1 23881 ppiltx 27094 tglineneq 28578 lnopp2hpgb 28697 colopp 28703 ex-pss 30364 drngidlhash 33412 ssdifidlprm 33436 mxidlmaxv 33446 mxidlprm 33448 drnglidl1ne0 33453 drng0mxidl 33454 qsdrnglem2 33474 rsprprmprmidl 33500 1arithufdlem4 33525 ply1annnr 33700 irngnminplynz 33709 algextdeglem4 33717 unelldsys 34155 cntnevol 34225 fin2solem 37607 lshpnelb 38984 osumcllem10N 39966 pexmidlem7N 39977 dochsnkrlem1 41470 ricdrng1 42523 rpnnen3lem 43027 lvecpsslmod 48500 |
| Copyright terms: Public domain | W3C validator |