| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
| Ref | Expression |
|---|---|
| nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelneq2 2853 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | |
| 2 | 1 | neqned 2932 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-ne 2926 |
| This theorem is referenced by: elnelne1 3040 difsnb 4757 fofinf1o 9222 fin23lem24 10216 fin23lem31 10237 ttukeylem7 10409 npomex 10890 lbspss 20986 islbs3 21062 lbsextlem4 21068 obslbs 21637 hauspwpwf1 23872 ppiltx 27085 tglineneq 28589 lnopp2hpgb 28708 colopp 28714 ex-pss 30372 drngidlhash 33372 ssdifidlprm 33396 mxidlmaxv 33406 mxidlprm 33408 drnglidl1ne0 33413 drng0mxidl 33414 qsdrnglem2 33434 rsprprmprmidl 33460 1arithufdlem4 33485 ply1annnr 33676 irngnminplynz 33685 algextdeglem4 33693 unelldsys 34131 cntnevol 34201 fin2solem 37596 lshpnelb 38973 osumcllem10N 39954 pexmidlem7N 39965 dochsnkrlem1 41458 ricdrng1 42511 rpnnen3lem 43014 lvecpsslmod 48502 |
| Copyright terms: Public domain | W3C validator |