Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
Ref | Expression |
---|---|
nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq2 2864 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | |
2 | 1 | neqned 2950 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 df-ne 2944 |
This theorem is referenced by: elnelne1 3059 difsnb 4739 fofinf1o 9094 fin23lem24 10078 fin23lem31 10099 ttukeylem7 10271 npomex 10752 lbspss 20344 islbs3 20417 lbsextlem4 20423 obslbs 20937 hauspwpwf1 23138 ppiltx 26326 tglineneq 27005 lnopp2hpgb 27124 colopp 27130 ex-pss 28792 mxidlprm 31640 unelldsys 32126 cntnevol 32196 fin2solem 35763 lshpnelb 36998 osumcllem10N 37979 pexmidlem7N 37990 dochsnkrlem1 39483 rpnnen3lem 40853 lvecpsslmod 45848 |
Copyright terms: Public domain | W3C validator |