| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
| Ref | Expression |
|---|---|
| nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelneq2 2853 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | |
| 2 | 1 | neqned 2932 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-ne 2926 |
| This theorem is referenced by: elnelne1 3040 difsnb 4766 fofinf1o 9259 fin23lem24 10251 fin23lem31 10272 ttukeylem7 10444 npomex 10925 lbspss 21021 islbs3 21097 lbsextlem4 21103 obslbs 21672 hauspwpwf1 23907 ppiltx 27120 tglineneq 28624 lnopp2hpgb 28743 colopp 28749 ex-pss 30407 drngidlhash 33398 ssdifidlprm 33422 mxidlmaxv 33432 mxidlprm 33434 drnglidl1ne0 33439 drng0mxidl 33440 qsdrnglem2 33460 rsprprmprmidl 33486 1arithufdlem4 33511 ply1annnr 33686 irngnminplynz 33695 algextdeglem4 33703 unelldsys 34141 cntnevol 34211 fin2solem 37593 lshpnelb 38970 osumcllem10N 39952 pexmidlem7N 39963 dochsnkrlem1 41456 ricdrng1 42509 rpnnen3lem 43013 lvecpsslmod 48489 |
| Copyright terms: Public domain | W3C validator |