![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) |
Ref | Expression |
---|---|
nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2868 | . . . 4 ⊢ (𝐵 = 𝐶 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) | |
2 | 1 | biimpcd 241 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐵 = 𝐶 → 𝐴 ∈ 𝐶)) |
3 | 2 | necon3bd 2986 | . 2 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ 𝐶 → 𝐵 ≠ 𝐶)) |
4 | 3 | imp 396 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-cleq 2793 df-clel 2796 df-ne 2973 |
This theorem is referenced by: elnelne1 3085 difsnb 4526 fofinf1o 8484 fin23lem24 9433 fin23lem31 9454 ttukeylem7 9626 npomex 10107 lbspss 19402 islbs3 19477 lbsextlem4 19483 obslbs 20398 hauspwpwf1 22118 ppiltx 25254 tglineneq 25894 lnopp2hpgb 26010 colopp 26016 ex-pss 27812 unelldsys 30736 cntnevol 30806 fin2solem 33883 lshpnelb 35004 osumcllem10N 35985 pexmidlem7N 35996 dochsnkrlem1 37489 rpnnen3lem 38378 lvecpsslmod 43090 |
Copyright terms: Public domain | W3C validator |