| Step | Hyp | Ref
| Expression |
| 1 | | df-ral 3053 |
. 2
⊢
(∀𝑥 ∈
𝑦 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝑦 → 𝜑)) |
| 2 | | elequ2 2124 |
. . . . 5
⊢ (𝑧 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦)) |
| 3 | 2 | imbi1d 341 |
. . . 4
⊢ (𝑧 = 𝑦 → ((𝑥 ∈ 𝑧 → 𝜑) ↔ (𝑥 ∈ 𝑦 → 𝜑))) |
| 4 | 3 | sbievw 2094 |
. . 3
⊢ ([𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑) ↔ (𝑥 ∈ 𝑦 → 𝜑)) |
| 5 | 4 | albii 1819 |
. 2
⊢
(∀𝑥[𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝑦 → 𝜑)) |
| 6 | | elequ1 2116 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| 7 | | sbralie.1 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 8 | 6, 7 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑧 → 𝜑) ↔ (𝑦 ∈ 𝑧 → 𝜓))) |
| 9 | 8 | cbvalvw 2036 |
. . . . 5
⊢
(∀𝑥(𝑥 ∈ 𝑧 → 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝑧 → 𝜓)) |
| 10 | | df-ral 3053 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝜓)) |
| 11 | 10 | sbbii 2077 |
. . . . . 6
⊢ ([𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓 ↔ [𝑧 / 𝑥]∀𝑦(𝑦 ∈ 𝑥 → 𝜓)) |
| 12 | | sbal 2170 |
. . . . . 6
⊢ ([𝑧 / 𝑥]∀𝑦(𝑦 ∈ 𝑥 → 𝜓) ↔ ∀𝑦[𝑧 / 𝑥](𝑦 ∈ 𝑥 → 𝜓)) |
| 13 | | elequ2 2124 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧)) |
| 14 | 13 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝑦 ∈ 𝑥 → 𝜓) ↔ (𝑦 ∈ 𝑧 → 𝜓))) |
| 15 | 14 | sbievw 2094 |
. . . . . . 7
⊢ ([𝑧 / 𝑥](𝑦 ∈ 𝑥 → 𝜓) ↔ (𝑦 ∈ 𝑧 → 𝜓)) |
| 16 | 15 | albii 1819 |
. . . . . 6
⊢
(∀𝑦[𝑧 / 𝑥](𝑦 ∈ 𝑥 → 𝜓) ↔ ∀𝑦(𝑦 ∈ 𝑧 → 𝜓)) |
| 17 | 11, 12, 16 | 3bitrri 298 |
. . . . 5
⊢
(∀𝑦(𝑦 ∈ 𝑧 → 𝜓) ↔ [𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
| 18 | 9, 17 | bitri 275 |
. . . 4
⊢
(∀𝑥(𝑥 ∈ 𝑧 → 𝜑) ↔ [𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
| 19 | 18 | sbbii 2077 |
. . 3
⊢ ([𝑦 / 𝑧]∀𝑥(𝑥 ∈ 𝑧 → 𝜑) ↔ [𝑦 / 𝑧][𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
| 20 | | sbal 2170 |
. . 3
⊢ ([𝑦 / 𝑧]∀𝑥(𝑥 ∈ 𝑧 → 𝜑) ↔ ∀𝑥[𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑)) |
| 21 | | sbco2vv 2100 |
. . 3
⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
| 22 | 19, 20, 21 | 3bitr3i 301 |
. 2
⊢
(∀𝑥[𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑) ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
| 23 | 1, 5, 22 | 3bitr2i 299 |
1
⊢
(∀𝑥 ∈
𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |