Step | Hyp | Ref
| Expression |
1 | | df-ral 3062 |
. 2
⊢
(∀𝑥 ∈
𝑦 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝑦 → 𝜑)) |
2 | | sbim 2299 |
. . . 4
⊢ ([𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑) ↔ ([𝑦 / 𝑧]𝑥 ∈ 𝑧 → [𝑦 / 𝑧]𝜑)) |
3 | | elsb2 2123 |
. . . . 5
⊢ ([𝑦 / 𝑧]𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦) |
4 | | sbv 2091 |
. . . . 5
⊢ ([𝑦 / 𝑧]𝜑 ↔ 𝜑) |
5 | 3, 4 | imbi12i 350 |
. . . 4
⊢ (([𝑦 / 𝑧]𝑥 ∈ 𝑧 → [𝑦 / 𝑧]𝜑) ↔ (𝑥 ∈ 𝑦 → 𝜑)) |
6 | 2, 5 | bitri 274 |
. . 3
⊢ ([𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑) ↔ (𝑥 ∈ 𝑦 → 𝜑)) |
7 | 6 | albii 1821 |
. 2
⊢
(∀𝑥[𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝑦 → 𝜑)) |
8 | | elequ1 2113 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
9 | | sbralie.1 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
10 | 8, 9 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑧 → 𝜑) ↔ (𝑦 ∈ 𝑧 → 𝜓))) |
11 | 10 | cbvalvw 2039 |
. . . . 5
⊢
(∀𝑥(𝑥 ∈ 𝑧 → 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝑧 → 𝜓)) |
12 | | df-ral 3062 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝜓)) |
13 | 12 | sbbii 2079 |
. . . . . 6
⊢ ([𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓 ↔ [𝑧 / 𝑥]∀𝑦(𝑦 ∈ 𝑥 → 𝜓)) |
14 | | sbal 2159 |
. . . . . 6
⊢ ([𝑧 / 𝑥]∀𝑦(𝑦 ∈ 𝑥 → 𝜓) ↔ ∀𝑦[𝑧 / 𝑥](𝑦 ∈ 𝑥 → 𝜓)) |
15 | | sbim 2299 |
. . . . . . . 8
⊢ ([𝑧 / 𝑥](𝑦 ∈ 𝑥 → 𝜓) ↔ ([𝑧 / 𝑥]𝑦 ∈ 𝑥 → [𝑧 / 𝑥]𝜓)) |
16 | | elsb2 2123 |
. . . . . . . . 9
⊢ ([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧) |
17 | | sbv 2091 |
. . . . . . . . 9
⊢ ([𝑧 / 𝑥]𝜓 ↔ 𝜓) |
18 | 16, 17 | imbi12i 350 |
. . . . . . . 8
⊢ (([𝑧 / 𝑥]𝑦 ∈ 𝑥 → [𝑧 / 𝑥]𝜓) ↔ (𝑦 ∈ 𝑧 → 𝜓)) |
19 | 15, 18 | bitri 274 |
. . . . . . 7
⊢ ([𝑧 / 𝑥](𝑦 ∈ 𝑥 → 𝜓) ↔ (𝑦 ∈ 𝑧 → 𝜓)) |
20 | 19 | albii 1821 |
. . . . . 6
⊢
(∀𝑦[𝑧 / 𝑥](𝑦 ∈ 𝑥 → 𝜓) ↔ ∀𝑦(𝑦 ∈ 𝑧 → 𝜓)) |
21 | 13, 14, 20 | 3bitrri 297 |
. . . . 5
⊢
(∀𝑦(𝑦 ∈ 𝑧 → 𝜓) ↔ [𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
22 | 11, 21 | bitri 274 |
. . . 4
⊢
(∀𝑥(𝑥 ∈ 𝑧 → 𝜑) ↔ [𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
23 | 22 | sbbii 2079 |
. . 3
⊢ ([𝑦 / 𝑧]∀𝑥(𝑥 ∈ 𝑧 → 𝜑) ↔ [𝑦 / 𝑧][𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
24 | | sbal 2159 |
. . 3
⊢ ([𝑦 / 𝑧]∀𝑥(𝑥 ∈ 𝑧 → 𝜑) ↔ ∀𝑥[𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑)) |
25 | | sbco2vv 2100 |
. . 3
⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
26 | 23, 24, 25 | 3bitr3i 300 |
. 2
⊢
(∀𝑥[𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑) ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
27 | 1, 7, 26 | 3bitr2i 298 |
1
⊢
(∀𝑥 ∈
𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |