Step | Hyp | Ref
| Expression |
1 | | df-ral 3068 |
. 2
⊢
(∀𝑥 ∈
𝑦 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝑦 → 𝜑)) |
2 | | nfv 1913 |
. . . . 5
⊢
Ⅎ𝑧𝜑 |
3 | 2 | sblim 2310 |
. . . 4
⊢ ([𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑) ↔ ([𝑦 / 𝑧]𝑥 ∈ 𝑧 → 𝜑)) |
4 | | elsb2 2125 |
. . . . 5
⊢ ([𝑦 / 𝑧]𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦) |
5 | 4 | imbi1i 349 |
. . . 4
⊢ (([𝑦 / 𝑧]𝑥 ∈ 𝑧 → 𝜑) ↔ (𝑥 ∈ 𝑦 → 𝜑)) |
6 | 3, 5 | bitri 275 |
. . 3
⊢ ([𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑) ↔ (𝑥 ∈ 𝑦 → 𝜑)) |
7 | 6 | albii 1817 |
. 2
⊢
(∀𝑥[𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝑦 → 𝜑)) |
8 | | elequ1 2115 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
9 | | sbralie.1 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
10 | 8, 9 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑧 → 𝜑) ↔ (𝑦 ∈ 𝑧 → 𝜓))) |
11 | 10 | cbvalvw 2035 |
. . . . 5
⊢
(∀𝑥(𝑥 ∈ 𝑧 → 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝑧 → 𝜓)) |
12 | | df-ral 3068 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝜓)) |
13 | 12 | sbbii 2076 |
. . . . . 6
⊢ ([𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓 ↔ [𝑧 / 𝑥]∀𝑦(𝑦 ∈ 𝑥 → 𝜓)) |
14 | | sbal 2170 |
. . . . . 6
⊢ ([𝑧 / 𝑥]∀𝑦(𝑦 ∈ 𝑥 → 𝜓) ↔ ∀𝑦[𝑧 / 𝑥](𝑦 ∈ 𝑥 → 𝜓)) |
15 | | nfv 1913 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝜓 |
16 | 15 | sblim 2310 |
. . . . . . . 8
⊢ ([𝑧 / 𝑥](𝑦 ∈ 𝑥 → 𝜓) ↔ ([𝑧 / 𝑥]𝑦 ∈ 𝑥 → 𝜓)) |
17 | | elsb2 2125 |
. . . . . . . . 9
⊢ ([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧) |
18 | 17 | imbi1i 349 |
. . . . . . . 8
⊢ (([𝑧 / 𝑥]𝑦 ∈ 𝑥 → 𝜓) ↔ (𝑦 ∈ 𝑧 → 𝜓)) |
19 | 16, 18 | bitri 275 |
. . . . . . 7
⊢ ([𝑧 / 𝑥](𝑦 ∈ 𝑥 → 𝜓) ↔ (𝑦 ∈ 𝑧 → 𝜓)) |
20 | 19 | albii 1817 |
. . . . . 6
⊢
(∀𝑦[𝑧 / 𝑥](𝑦 ∈ 𝑥 → 𝜓) ↔ ∀𝑦(𝑦 ∈ 𝑧 → 𝜓)) |
21 | 13, 14, 20 | 3bitrri 298 |
. . . . 5
⊢
(∀𝑦(𝑦 ∈ 𝑧 → 𝜓) ↔ [𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
22 | 11, 21 | bitri 275 |
. . . 4
⊢
(∀𝑥(𝑥 ∈ 𝑧 → 𝜑) ↔ [𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
23 | 22 | sbbii 2076 |
. . 3
⊢ ([𝑦 / 𝑧]∀𝑥(𝑥 ∈ 𝑧 → 𝜑) ↔ [𝑦 / 𝑧][𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
24 | | sbal 2170 |
. . 3
⊢ ([𝑦 / 𝑧]∀𝑥(𝑥 ∈ 𝑧 → 𝜑) ↔ ∀𝑥[𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑)) |
25 | | sbco2vv 2099 |
. . 3
⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]∀𝑦 ∈ 𝑥 𝜓 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
26 | 23, 24, 25 | 3bitr3i 301 |
. 2
⊢
(∀𝑥[𝑦 / 𝑧](𝑥 ∈ 𝑧 → 𝜑) ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
27 | 1, 7, 26 | 3bitr2i 299 |
1
⊢
(∀𝑥 ∈
𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |