MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbralie Structured version   Visualization version   GIF version

Theorem sbralie 3336
Description: Implicit to explicit substitution that swaps variables in a restrictedly universally quantified expression. (Contributed by NM, 5-Sep-2004.) Avoid ax-ext 2708, df-cleq 2728, df-clel 2810. (Revised by Wolf Lammen, 10-Mar-2025.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 13-Nov-2025.)
Hypothesis
Ref Expression
sbralie.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbralie (∀𝑥𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦𝑥 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem sbralie
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ral 3053 . 2 (∀𝑥𝑦 𝜑 ↔ ∀𝑥(𝑥𝑦𝜑))
2 elequ2 2124 . . . . 5 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
32imbi1d 341 . . . 4 (𝑧 = 𝑦 → ((𝑥𝑧𝜑) ↔ (𝑥𝑦𝜑)))
43sbievw 2094 . . 3 ([𝑦 / 𝑧](𝑥𝑧𝜑) ↔ (𝑥𝑦𝜑))
54albii 1819 . 2 (∀𝑥[𝑦 / 𝑧](𝑥𝑧𝜑) ↔ ∀𝑥(𝑥𝑦𝜑))
6 elequ1 2116 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
7 sbralie.1 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
86, 7imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑧𝜑) ↔ (𝑦𝑧𝜓)))
98cbvalvw 2036 . . . . 5 (∀𝑥(𝑥𝑧𝜑) ↔ ∀𝑦(𝑦𝑧𝜓))
10 df-ral 3053 . . . . . . 7 (∀𝑦𝑥 𝜓 ↔ ∀𝑦(𝑦𝑥𝜓))
1110sbbii 2077 . . . . . 6 ([𝑧 / 𝑥]∀𝑦𝑥 𝜓 ↔ [𝑧 / 𝑥]∀𝑦(𝑦𝑥𝜓))
12 sbal 2170 . . . . . 6 ([𝑧 / 𝑥]∀𝑦(𝑦𝑥𝜓) ↔ ∀𝑦[𝑧 / 𝑥](𝑦𝑥𝜓))
13 elequ2 2124 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
1413imbi1d 341 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑦𝑥𝜓) ↔ (𝑦𝑧𝜓)))
1514sbievw 2094 . . . . . . 7 ([𝑧 / 𝑥](𝑦𝑥𝜓) ↔ (𝑦𝑧𝜓))
1615albii 1819 . . . . . 6 (∀𝑦[𝑧 / 𝑥](𝑦𝑥𝜓) ↔ ∀𝑦(𝑦𝑧𝜓))
1711, 12, 163bitrri 298 . . . . 5 (∀𝑦(𝑦𝑧𝜓) ↔ [𝑧 / 𝑥]∀𝑦𝑥 𝜓)
189, 17bitri 275 . . . 4 (∀𝑥(𝑥𝑧𝜑) ↔ [𝑧 / 𝑥]∀𝑦𝑥 𝜓)
1918sbbii 2077 . . 3 ([𝑦 / 𝑧]∀𝑥(𝑥𝑧𝜑) ↔ [𝑦 / 𝑧][𝑧 / 𝑥]∀𝑦𝑥 𝜓)
20 sbal 2170 . . 3 ([𝑦 / 𝑧]∀𝑥(𝑥𝑧𝜑) ↔ ∀𝑥[𝑦 / 𝑧](𝑥𝑧𝜑))
21 sbco2vv 2100 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥]∀𝑦𝑥 𝜓 ↔ [𝑦 / 𝑥]∀𝑦𝑥 𝜓)
2219, 20, 213bitr3i 301 . 2 (∀𝑥[𝑦 / 𝑧](𝑥𝑧𝜑) ↔ [𝑦 / 𝑥]∀𝑦𝑥 𝜓)
231, 5, 223bitr2i 299 1 (∀𝑥𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦𝑥 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  [wsb 2065  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-ral 3053
This theorem is referenced by:  tfinds2  7864
  Copyright terms: Public domain W3C validator