MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbralie Structured version   Visualization version   GIF version

Theorem sbralie 3471
Description: Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.)
Hypothesis
Ref Expression
sbralie.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbralie (∀𝑥𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦𝑥 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem sbralie
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvralsvw 3467 . . 3 (∀𝑦𝑥 𝜓 ↔ ∀𝑧𝑥 [𝑧 / 𝑦]𝜓)
21sbbii 2077 . 2 ([𝑦 / 𝑥]∀𝑦𝑥 𝜓 ↔ [𝑦 / 𝑥]∀𝑧𝑥 [𝑧 / 𝑦]𝜓)
3 raleq 3405 . . 3 (𝑥 = 𝑦 → (∀𝑧𝑥 [𝑧 / 𝑦]𝜓 ↔ ∀𝑧𝑦 [𝑧 / 𝑦]𝜓))
43sbievw 2099 . 2 ([𝑦 / 𝑥]∀𝑧𝑥 [𝑧 / 𝑦]𝜓 ↔ ∀𝑧𝑦 [𝑧 / 𝑦]𝜓)
5 cbvralsvw 3467 . . 3 (∀𝑧𝑦 [𝑧 / 𝑦]𝜓 ↔ ∀𝑥𝑦 [𝑥 / 𝑧][𝑧 / 𝑦]𝜓)
6 sbco2vv 2104 . . . . 5 ([𝑥 / 𝑧][𝑧 / 𝑦]𝜓 ↔ [𝑥 / 𝑦]𝜓)
7 sbralie.1 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
87bicomd 225 . . . . . . 7 (𝑥 = 𝑦 → (𝜓𝜑))
98equcoms 2023 . . . . . 6 (𝑦 = 𝑥 → (𝜓𝜑))
109sbievw 2099 . . . . 5 ([𝑥 / 𝑦]𝜓𝜑)
116, 10bitri 277 . . . 4 ([𝑥 / 𝑧][𝑧 / 𝑦]𝜓𝜑)
1211ralbii 3165 . . 3 (∀𝑥𝑦 [𝑥 / 𝑧][𝑧 / 𝑦]𝜓 ↔ ∀𝑥𝑦 𝜑)
135, 12bitri 277 . 2 (∀𝑧𝑦 [𝑧 / 𝑦]𝜓 ↔ ∀𝑥𝑦 𝜑)
142, 4, 133bitrri 300 1 (∀𝑥𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦𝑥 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  [wsb 2065  wral 3138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ex 1777  df-nf 1781  df-sb 2066  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143
This theorem is referenced by:  tfinds2  7577
  Copyright terms: Public domain W3C validator