MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeq1dALT Structured version   Visualization version   GIF version

Theorem eqeq1dALT 2741
Description: Alternate proof of eqeq1d 2740, shorter but requiring ax-12 2173. (Contributed by NM, 27-Dec-1993.) (Revised by Wolf Lammen, 19-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
eqeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eqeq1dALT (𝜑 → (𝐴 = 𝐶𝐵 = 𝐶))

Proof of Theorem eqeq1dALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1d.1 . . . . . 6 (𝜑𝐴 = 𝐵)
2 dfcleq 2731 . . . . . 6 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
31, 2sylib 217 . . . . 5 (𝜑 → ∀𝑥(𝑥𝐴𝑥𝐵))
4319.21bi 2184 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
54bibi1d 343 . . 3 (𝜑 → ((𝑥𝐴𝑥𝐶) ↔ (𝑥𝐵𝑥𝐶)))
65albidv 1924 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝑥𝐶) ↔ ∀𝑥(𝑥𝐵𝑥𝐶)))
7 dfcleq 2731 . 2 (𝐴 = 𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
8 dfcleq 2731 . 2 (𝐵 = 𝐶 ↔ ∀𝑥(𝑥𝐵𝑥𝐶))
96, 7, 83bitr4g 313 1 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator