Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeq1dALT | Structured version Visualization version GIF version |
Description: Alternate proof of eqeq1d 2740, shorter but requiring ax-12 2171. (Contributed by NM, 27-Dec-1993.) (Revised by Wolf Lammen, 19-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eqeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eqeq1dALT | ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1d.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | dfcleq 2731 | . . . . . 6 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | sylib 217 | . . . . 5 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
4 | 3 | 19.21bi 2182 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
5 | 4 | bibi1d 344 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶))) |
6 | 5 | albidv 1923 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶) ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶))) |
7 | dfcleq 2731 | . 2 ⊢ (𝐴 = 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶)) | |
8 | dfcleq 2731 | . 2 ⊢ (𝐵 = 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶)) | |
9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |