| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnetri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| eqnetr.1 | ⊢ 𝐴 = 𝐵 |
| eqnetr.2 | ⊢ 𝐵 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| eqnetri | ⊢ 𝐴 ≠ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetr.2 | . 2 ⊢ 𝐵 ≠ 𝐶 | |
| 2 | eqnetr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | neeq1i 2989 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴 ≠ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: eqnetrri 2996 notzfaus 5318 2on0 8448 1n0 8452 snnen2o 9184 noinfep 9613 card1 9921 fin23lem31 10296 s1nz 14572 bpoly4 16025 tan0 16119 nn0rppwr 16531 basendxnmulrndx 17259 plusgndxnmulrndx 17260 slotsbhcdif 17378 xrsnsgrp 21319 pzriprnglem4 21394 ustuqtop1 24129 iaa 26233 tan4thpi 26423 tan4thpiOLD 26424 ang180lem2 26720 mcubic 26757 quart1lem 26765 nogt01o 27608 slotsinbpsd 28368 slotslnbpsd 28369 ex-lcm 30387 9p10ne21 30399 cos9thpiminplylem5 33776 esumnul 34038 ballotth 34529 quad3 35657 bj-1upln0 36997 bj-2upln0 37011 bj-2upln1upl 37012 tan3rdpi 42340 sn-0ne2 42394 flt0 42625 flt4lem5e 42644 mncn0 43128 aaitgo 43151 stirlinglem11 46082 cjnpoly 46890 pgnbgreunbgrlem4 48109 sec0 49749 2p2ne5 49787 |
| Copyright terms: Public domain | W3C validator |