Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqnetri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetr.1 | ⊢ 𝐴 = 𝐵 |
eqnetr.2 | ⊢ 𝐵 ≠ 𝐶 |
Ref | Expression |
---|---|
eqnetri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetr.2 | . 2 ⊢ 𝐵 ≠ 𝐶 | |
2 | eqnetr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | neeq1i 3015 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
4 | 1, 3 | mpbir 234 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ≠ wne 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-cleq 2750 df-ne 2952 |
This theorem is referenced by: eqnetrri 3022 notzfaus 5230 notzfausOLD 5231 2on0 8123 1n0 8129 noinfep 9156 card1 9430 fin23lem31 9803 s1nz 14008 bpoly4 15461 tan0 15552 resslem 16615 basendxnplusgndx 16666 plusgndxnmulrndx 16675 basendxnmulrndx 16676 slotsbhcdif 16751 symgvalstruct 18592 rmodislmod 19770 cnfldfun 20178 xrsnsgrp 20202 matvsca 21116 ustuqtop1 22942 iaa 25020 tan4thpi 25206 ang180lem2 25495 mcubic 25532 quart1lem 25540 ex-lcm 28342 9p10ne21 28354 resvlem 31056 esumnul 31535 ballotth 32023 quad3 33144 nogt01o 33464 bj-1upln0 34726 bj-2upln0 34740 bj-2upln1upl 34741 nn0rppwr 39830 sn-0ne2 39886 flt0 39966 flt4lem5e 39985 mncn0 40456 aaitgo 40479 mnringnmulrd 41295 stirlinglem11 43092 sec0 45677 2p2ne5 45717 |
Copyright terms: Public domain | W3C validator |