| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnetri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| eqnetr.1 | ⊢ 𝐴 = 𝐵 |
| eqnetr.2 | ⊢ 𝐵 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| eqnetri | ⊢ 𝐴 ≠ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetr.2 | . 2 ⊢ 𝐵 ≠ 𝐶 | |
| 2 | eqnetr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | neeq1i 2993 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴 ≠ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ne 2930 |
| This theorem is referenced by: eqnetrri 3000 notzfaus 5305 2on0 8407 1n0 8411 snnen2o 9138 noinfep 9559 card1 9870 fin23lem31 10243 s1nz 14519 bpoly4 15970 tan0 16064 nn0rppwr 16476 basendxnmulrndx 17204 plusgndxnmulrndx 17205 slotsbhcdif 17323 xrsnsgrp 21348 pzriprnglem4 21425 ustuqtop1 24159 iaa 26263 tan4thpi 26453 tan4thpiOLD 26454 ang180lem2 26750 mcubic 26787 quart1lem 26795 nogt01o 27638 slotsinbpsd 28422 slotslnbpsd 28423 ex-lcm 30442 9p10ne21 30454 cos9thpiminplylem5 33822 esumnul 34084 ballotth 34574 quad3 35737 bj-1upln0 37076 bj-2upln0 37090 bj-2upln1upl 37091 tan3rdpi 42473 sn-0ne2 42527 flt0 42758 flt4lem5e 42777 mncn0 43259 aaitgo 43282 stirlinglem11 46209 nthrucw 47011 cjnpoly 47016 pgnbgreunbgrlem4 48246 sec0 49888 2p2ne5 49926 |
| Copyright terms: Public domain | W3C validator |