| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnetri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| eqnetr.1 | ⊢ 𝐴 = 𝐵 |
| eqnetr.2 | ⊢ 𝐵 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| eqnetri | ⊢ 𝐴 ≠ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetr.2 | . 2 ⊢ 𝐵 ≠ 𝐶 | |
| 2 | eqnetr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | neeq1i 2990 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴 ≠ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ne 2927 |
| This theorem is referenced by: eqnetrri 2997 notzfaus 5321 2on0 8451 1n0 8455 snnen2o 9191 noinfep 9620 card1 9928 fin23lem31 10303 s1nz 14579 bpoly4 16032 tan0 16126 nn0rppwr 16538 basendxnmulrndx 17266 plusgndxnmulrndx 17267 slotsbhcdif 17385 xrsnsgrp 21326 pzriprnglem4 21401 ustuqtop1 24136 iaa 26240 tan4thpi 26430 tan4thpiOLD 26431 ang180lem2 26727 mcubic 26764 quart1lem 26772 nogt01o 27615 slotsinbpsd 28375 slotslnbpsd 28376 ex-lcm 30394 9p10ne21 30406 cos9thpiminplylem5 33783 esumnul 34045 ballotth 34536 quad3 35664 bj-1upln0 37004 bj-2upln0 37018 bj-2upln1upl 37019 tan3rdpi 42347 sn-0ne2 42401 flt0 42632 flt4lem5e 42651 mncn0 43135 aaitgo 43158 stirlinglem11 46089 pgnbgreunbgrlem4 48113 sec0 49753 2p2ne5 49791 |
| Copyright terms: Public domain | W3C validator |