![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqnetri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetr.1 | ⊢ 𝐴 = 𝐵 |
eqnetr.2 | ⊢ 𝐵 ≠ 𝐶 |
Ref | Expression |
---|---|
eqnetri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetr.2 | . 2 ⊢ 𝐵 ≠ 𝐶 | |
2 | eqnetr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | neeq1i 3004 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
4 | 1, 3 | mpbir 230 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ≠ wne 2939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2940 |
This theorem is referenced by: eqnetrri 3011 notzfaus 5361 2on0 8488 1n0 8494 snnen2o 9243 noinfep 9661 card1 9969 fin23lem31 10344 s1nz 14564 bpoly4 16010 tan0 16101 resslemOLD 17194 basendxnplusgndxOLD 17235 basendxnmulrndx 17247 basendxnmulrndxOLD 17248 plusgndxnmulrndx 17249 slotsbhcdif 17367 slotsbhcdifOLD 17368 symgvalstructOLD 19313 rmodislmodOLD 20773 cnfldfunALTOLD 21247 xrsnsgrp 21270 pzriprnglem4 21344 matvscaOLD 22238 ustuqtop1 24066 iaa 26177 tan4thpi 26364 ang180lem2 26656 mcubic 26693 quart1lem 26701 nogt01o 27543 slotsinbpsd 28126 slotslnbpsd 28127 ex-lcm 30145 9p10ne21 30157 resvlemOLD 32883 esumnul 33511 ballotth 34001 quad3 35120 bj-1upln0 36356 bj-2upln0 36370 bj-2upln1upl 36371 nn0rppwr 41689 sn-0ne2 41744 flt0 41844 flt4lem5e 41863 mncn0 42346 aaitgo 42369 mnringnmulrdOLD 43434 stirlinglem11 45261 sec0 47969 2p2ne5 48009 |
Copyright terms: Public domain | W3C validator |