Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqnetri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetr.1 | ⊢ 𝐴 = 𝐵 |
eqnetr.2 | ⊢ 𝐵 ≠ 𝐶 |
Ref | Expression |
---|---|
eqnetri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetr.2 | . 2 ⊢ 𝐵 ≠ 𝐶 | |
2 | eqnetr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | neeq1i 3009 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
4 | 1, 3 | mpbir 230 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-ne 2945 |
This theorem is referenced by: eqnetrri 3016 notzfaus 5286 2on0 8322 1n0 8327 snnen2o 9035 noinfep 9427 card1 9735 fin23lem31 10108 s1nz 14321 bpoly4 15778 tan0 15869 resslemOLD 16961 basendxnplusgndxOLD 17002 basendxnmulrndx 17014 basendxnmulrndxOLD 17015 plusgndxnmulrndx 17016 slotsbhcdif 17134 slotsbhcdifOLD 17135 symgvalstructOLD 19014 rmodislmodOLD 20201 cnfldfunALTOLD 20620 xrsnsgrp 20643 matvscaOLD 21574 ustuqtop1 23402 iaa 25494 tan4thpi 25680 ang180lem2 25969 mcubic 26006 quart1lem 26014 slotsinbpsd 26811 slotslnbpsd 26812 ex-lcm 28831 9p10ne21 28843 resvlemOLD 31540 esumnul 32025 ballotth 32513 quad3 33637 nogt01o 33908 bj-1upln0 35208 bj-2upln0 35222 bj-2upln1upl 35223 nn0rppwr 40340 sn-0ne2 40396 flt0 40481 flt4lem5e 40500 mncn0 40971 aaitgo 40994 mnringnmulrdOLD 41835 stirlinglem11 43632 sec0 46473 2p2ne5 46513 |
Copyright terms: Public domain | W3C validator |