![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqnetri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetr.1 | ⊢ 𝐴 = 𝐵 |
eqnetr.2 | ⊢ 𝐵 ≠ 𝐶 |
Ref | Expression |
---|---|
eqnetri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetr.2 | . 2 ⊢ 𝐵 ≠ 𝐶 | |
2 | eqnetr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | neeq1i 3033 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
4 | 1, 3 | mpbir 223 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ≠ wne 2969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-cleq 2790 df-ne 2970 |
This theorem is referenced by: eqnetrri 3040 notzfaus 5030 2on0 7807 1n0 7813 noinfep 8805 card1 9078 fin23lem31 9451 s1nz 13623 bpoly4 15123 tan0 15214 resslem 16255 basendxnplusgndx 16307 plusgndxnmulrndx 16316 basendxnmulrndx 16317 slotsbhcdif 16392 rmodislmod 19246 cnfldfun 20077 xrsnsgrp 20101 matbas 20541 matplusg 20542 matvsca 20544 ustuqtop1 22370 iaa 24418 tan4thpi 24605 ang180lem2 24889 mcubic 24923 quart1lem 24931 ex-lcm 27835 resvlem 30339 esumnul 30618 ballotth 31108 quad3 32071 bj-1upln0 33481 bj-2upln0 33495 bj-2upln1upl 33496 mncn0 38482 aaitgo 38505 stirlinglem11 41032 sec0 43291 2p2ne5 43334 |
Copyright terms: Public domain | W3C validator |