| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnetri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| eqnetr.1 | ⊢ 𝐴 = 𝐵 |
| eqnetr.2 | ⊢ 𝐵 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| eqnetri | ⊢ 𝐴 ≠ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetr.2 | . 2 ⊢ 𝐵 ≠ 𝐶 | |
| 2 | eqnetr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | neeq1i 2989 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴 ≠ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: eqnetrri 2996 notzfaus 5305 2on0 8409 1n0 8413 snnen2o 9144 noinfep 9575 card1 9883 fin23lem31 10256 s1nz 14532 bpoly4 15984 tan0 16078 nn0rppwr 16490 basendxnmulrndx 17218 plusgndxnmulrndx 17219 slotsbhcdif 17337 xrsnsgrp 21332 pzriprnglem4 21409 ustuqtop1 24145 iaa 26249 tan4thpi 26439 tan4thpiOLD 26440 ang180lem2 26736 mcubic 26773 quart1lem 26781 nogt01o 27624 slotsinbpsd 28404 slotslnbpsd 28405 ex-lcm 30420 9p10ne21 30432 cos9thpiminplylem5 33755 esumnul 34017 ballotth 34508 quad3 35645 bj-1upln0 36985 bj-2upln0 36999 bj-2upln1upl 37000 tan3rdpi 42328 sn-0ne2 42382 flt0 42613 flt4lem5e 42632 mncn0 43115 aaitgo 43138 stirlinglem11 46069 cjnpoly 46877 pgnbgreunbgrlem4 48107 sec0 49749 2p2ne5 49787 |
| Copyright terms: Public domain | W3C validator |