Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqnetri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetr.1 | ⊢ 𝐴 = 𝐵 |
eqnetr.2 | ⊢ 𝐵 ≠ 𝐶 |
Ref | Expression |
---|---|
eqnetri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetr.2 | . 2 ⊢ 𝐵 ≠ 𝐶 | |
2 | eqnetr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | neeq1i 3007 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
4 | 1, 3 | mpbir 230 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: eqnetrri 3014 notzfaus 5280 2on0 8276 1n0 8286 noinfep 9348 card1 9657 fin23lem31 10030 s1nz 14240 bpoly4 15697 tan0 15788 resslemOLD 16878 basendxnplusgndxOLD 16919 basendxnmulrndx 16931 basendxnmulrndxOLD 16932 plusgndxnmulrndx 16933 slotsbhcdif 17044 slotsbhcdifOLD 17045 symgvalstructOLD 18920 rmodislmodOLD 20107 cnfldfun 20522 xrsnsgrp 20546 matvsca 21473 ustuqtop1 23301 iaa 25390 tan4thpi 25576 ang180lem2 25865 mcubic 25902 quart1lem 25910 slotsinbpsd 26707 slotslnbpsd 26708 ex-lcm 28723 9p10ne21 28735 resvlemOLD 31433 esumnul 31916 ballotth 32404 quad3 33528 nogt01o 33826 bj-1upln0 35126 bj-2upln0 35140 bj-2upln1upl 35141 nn0rppwr 40254 sn-0ne2 40310 flt0 40390 flt4lem5e 40409 mncn0 40880 aaitgo 40903 mnringnmulrdOLD 41717 stirlinglem11 43515 sec0 46348 2p2ne5 46388 |
Copyright terms: Public domain | W3C validator |