| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnetri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| eqnetr.1 | ⊢ 𝐴 = 𝐵 |
| eqnetr.2 | ⊢ 𝐵 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| eqnetri | ⊢ 𝐴 ≠ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetr.2 | . 2 ⊢ 𝐵 ≠ 𝐶 | |
| 2 | eqnetr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | neeq1i 2992 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴 ≠ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 |
| This theorem is referenced by: eqnetrri 2999 notzfaus 5301 2on0 8399 1n0 8403 snnen2o 9129 noinfep 9550 card1 9861 fin23lem31 10234 s1nz 14515 bpoly4 15966 tan0 16060 nn0rppwr 16472 basendxnmulrndx 17200 plusgndxnmulrndx 17201 slotsbhcdif 17319 xrsnsgrp 21345 pzriprnglem4 21422 ustuqtop1 24157 iaa 26261 tan4thpi 26451 tan4thpiOLD 26452 ang180lem2 26748 mcubic 26785 quart1lem 26793 nogt01o 27636 slotsinbpsd 28420 slotslnbpsd 28421 ex-lcm 30436 9p10ne21 30448 cos9thpiminplylem5 33797 esumnul 34059 ballotth 34549 quad3 35712 bj-1upln0 37049 bj-2upln0 37063 bj-2upln1upl 37064 tan3rdpi 42391 sn-0ne2 42445 flt0 42676 flt4lem5e 42695 mncn0 43178 aaitgo 43201 stirlinglem11 46128 cjnpoly 46926 pgnbgreunbgrlem4 48156 sec0 49798 2p2ne5 49836 |
| Copyright terms: Public domain | W3C validator |