| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnetri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| eqnetr.1 | ⊢ 𝐴 = 𝐵 |
| eqnetr.2 | ⊢ 𝐵 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| eqnetri | ⊢ 𝐴 ≠ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetr.2 | . 2 ⊢ 𝐵 ≠ 𝐶 | |
| 2 | eqnetr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | neeq1i 2996 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴 ≠ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ne 2933 |
| This theorem is referenced by: eqnetrri 3003 notzfaus 5333 2on0 8496 1n0 8500 snnen2o 9245 noinfep 9674 card1 9982 fin23lem31 10357 s1nz 14625 bpoly4 16075 tan0 16169 nn0rppwr 16580 basendxnmulrndx 17310 plusgndxnmulrndx 17311 slotsbhcdif 17429 xrsnsgrp 21370 pzriprnglem4 21445 ustuqtop1 24180 iaa 26285 tan4thpi 26475 tan4thpiOLD 26476 ang180lem2 26772 mcubic 26809 quart1lem 26817 nogt01o 27660 slotsinbpsd 28420 slotslnbpsd 28421 ex-lcm 30439 9p10ne21 30451 cos9thpiminplylem5 33820 esumnul 34079 ballotth 34570 quad3 35692 bj-1upln0 37027 bj-2upln0 37041 bj-2upln1upl 37042 tan3rdpi 42399 sn-0ne2 42449 flt0 42660 flt4lem5e 42679 mncn0 43163 aaitgo 43186 stirlinglem11 46113 sec0 49624 2p2ne5 49662 |
| Copyright terms: Public domain | W3C validator |