![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqnetri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetr.1 | ⊢ 𝐴 = 𝐵 |
eqnetr.2 | ⊢ 𝐵 ≠ 𝐶 |
Ref | Expression |
---|---|
eqnetri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetr.2 | . 2 ⊢ 𝐵 ≠ 𝐶 | |
2 | eqnetr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | neeq1i 3011 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: eqnetrri 3018 notzfaus 5381 2on0 8538 1n0 8544 snnen2o 9300 noinfep 9729 card1 10037 fin23lem31 10412 s1nz 14655 bpoly4 16107 tan0 16199 nn0rppwr 16608 resslemOLD 17301 basendxnplusgndxOLD 17342 basendxnmulrndx 17354 basendxnmulrndxOLD 17355 plusgndxnmulrndx 17356 slotsbhcdif 17474 slotsbhcdifOLD 17475 symgvalstructOLD 19439 rmodislmodOLD 20951 cnfldfunALTOLDOLD 21416 xrsnsgrp 21443 pzriprnglem4 21518 matvscaOLD 22443 ustuqtop1 24271 iaa 26385 tan4thpi 26574 tan4thpiOLD 26575 ang180lem2 26871 mcubic 26908 quart1lem 26916 nogt01o 27759 slotsinbpsd 28467 slotslnbpsd 28468 ex-lcm 30490 9p10ne21 30502 resvlemOLD 33323 esumnul 34012 ballotth 34502 quad3 35638 bj-1upln0 36975 bj-2upln0 36989 bj-2upln1upl 36990 tan3rdpi 42338 sn-0ne2 42382 flt0 42592 flt4lem5e 42611 mncn0 43096 aaitgo 43119 mnringnmulrdOLD 44179 stirlinglem11 46005 sec0 48852 2p2ne5 48892 |
Copyright terms: Public domain | W3C validator |